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Abstract 

We present an expanded framework for the use of business analytics in projects. To the 

commonly used descriptive, predictive, and prescriptive analytics, we add comparative 

analytics, wherein we compare the performance of systems under different interventions. This 

framework provides a conceptual roadmap for the implementation of business analytics 

projects. We then demonstrate this framework using recent operations research literature on 

analytics in healthcare, summarizing papers focusing on one of these aspects. Next, we discuss 

queue mining as an example of theory and practice illustrative of these aspects. We conclude 

there is room for further work by operations researchers and management scientists within 

business analytics projects generally and the healthcare industry more specifically. We argue 

future work should consider both theory and practice, especially within prescriptive analytics 

projects, where analysis through the lens of operations research and management science is 

imperative. We provide some thoughts on the current and future state of operations research 

and management science in business analytics. 

1. Framework for Business Analytics 

Recent advancements in computing and analytics suggest that both the practice and theory of 

service operations have been dramatically changed and will continue to shift in the near and 

more distant future. The availability of data and efficient tools for visualization and analysis 

opens several possibilities for research and practice in service operations. (Cohen 2018) 

presents a modern view of the impact of big data on service operations. Business analytics in 

service operation is very broad as it includes, for example, revenue management for services, 

shared economy, and post-purchase services.  

To improve our understanding of the different paths towards implementing analytics, we 

surveyed the literature on analytics in services. As this is a vast literature, we only discuss the 



literature on business analytics in healthcare operations, with a focus on work related to 

queueing in this sector. Importantly, the trends and approaches discussed are applicable to 

business analytics in many services, as well as in other sectors. 

A common theme of analytics is that it uses quantitative analytical tools, such as statistics, 

econometrics, computer science, and operations research, to analyze specific problems. 

Moreover, these analytic tools are used to analyze and model data. Finally, business analytics 

uses analytics to support decision making in businesses. Similar to the decision-centric 

definition of analytics in (Rose 2016), we offer the following concise definition: 

• Business Analytics: Usage of data-driven analytical methodologies to support decisions. 

1.1 Defining Descriptive, Predictive, Comparative, and Prescriptive Analytics 

Quantifiable performance measures of different business objectives for different business units 

are often required to support business decisions. Therefore, every business analytics project 

benefits from familiarity with the application and its modeling.  (Lustig et al. 2010) in terms of 

discuss descriptive, predictive, and prescriptive analytics. There are several definitions for these 

different aspects of analytics. Nevertheless, based on our literature review, we find these terms 

do not capture the complexity of how business analytics works and are thus insufficient. 

Specifically, business analytics should differentiate between existing systems and systems with 

different interventions, i.e., under different decisions. To emphasize this important distinction, 

we add the term comparative analytics. Figure 1 depicts these four aspects of business analytics 

projects and their intersection. We define them as follows:  

• Descriptive analytics describes past performance of existing systems.  

• Predictive analytics predicts future performance of systems. 

• Comparative analytics compares performance of systems under different interventions. 

• Prescriptive analytics prescribes interventions to improve future performance of systems. 



Figure 1: Descriptive, Predictive, Comparative, and Prescriptive Business Analytics 

 

The aim of descriptive analytics is to describe and understand systems’ past performance. In 

the lingo of statistics, descriptive analytics studies performance in-sample. While there is full 

certainty of what happened, there may be many different interpretations of the best way to 

describe it. Descriptive analytics is focused on data analysis, reporting, and visualization. A 

common descriptive analytics problem is the clustering of patients based on their 

comorbidities. Some of the main challenges in descriptive analytics are related to the 

interpretation of available records and the problem of dealing with missing and inaccurate 

data. Importantly, appropriate descriptive analytics is the building block for predictive, 

comparative, and prescriptive analytics. For example, in some cases, the right visualization 

makes the best interventions clear. 

The aim of predictive analytics is to predict systems’ future performance. It requires inductive 

reasoning to yield out-of-sample results. Predictive analytics often ignores the causal effect, or 

assumes it is clear. Therefore, predictive analytics captures the impact of interventions on 

performance by changing the values of inputs into the model. A common predictive analytics 

problem is demand forecasting. Predictive analytics is focused on finding trends and 

relationships in data that the user believes will continue to hold true in the future. The main 

challenges in predictive analytics are thus related to these beliefs. Two important concepts of 

predictive analytics that substantiate such beliefs are: (i) modeling the physical system - if users 

trust the model and the insights gained from its analysis, they are more likely to trust its 

predictive results, and (ii) testing how a prediction model developed on training data (in-
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sample) performs on prediction data (out-of-sample). Good performance on the prediction data 

demonstrates that the analysis has predictive power. Predictive analytics models may suffer 

from overfitting: a complex model that explains all training data may be useless out-of-sample. 

Therefore, simple models that capture only a few important effects are often preferable. 

Finally, appropriate predictive analytics is often a building block for prescriptive analytics. 

The aim of comparative analytics is to compare the performances of different systems under 

different interventions. Such a comparison can be done either retrospectively or prospectively, 

using inductive reasoning to yield results under different interventions. Retrospective 

comparative analytics focuses on expressing performance that would have occurred under 

different interventions. This analytics manipulates existing data as if different interventions 

were made. Two examples of retrospective comparative analytics are expressing 

counterfactuals and benchmarking. Expressing counterfactuals, e.g., measuring the impact of a 

completed project, is an example of retrospective comparative analytics when a single business 

unit is analyzed. Benchmarking, e.g., comparing the performance of different branches 

(exposed to different intervention), is an example when several units are analyzed. The main 

challenges in retrospective comparative analytics are establishing causality, using the 

appropriate causal inference tools, and ensuring data on a specific system under different 

interventions do not exist. (Even in benchmarking, we only have data on each system under its 

own interventions.) Prospective comparative analytics focuses on predicting performance that 

would occur under different interventions. It can be thought of as performance analysis in the 

future. Thus, just like predictive analytics, it requires inductive reasoning to out-of-sample 

results. After establishing causality, such analysis is often achieved by combining models and 

data.  An important tool in prospective comparative analytics is simulation, as it permits the 

estimation of the impact of different interventions on relevant performances without the cost 

of implementing such changes in practice. (Simulation is also used for retrospective 

comparative analytics as part of verifying and validating the simulation model with managerial 

judgement.) Proper simulation models are built, validated, and verified using existing data. 

Simulation models may contain specific machine learning (ML) components to mimic building 

blocks that generate data. Another approach to comparative analytics is a controlled 



experiment (or A/B testing in the context of user experience) that records enough data on 

systems exposed to different interventions. To some extent, controlled experiments transform 

comparative analytics questions to descriptive analytics ones. Comparative analytics also 

emphasizes the importance of planning data collection to improve analytics in the future. In 

some cases when interventions are simple, e.g., go no-go with a project, the performance 

evaluation supplied by comparative analytics is sufficient to prescribe interventions. Note that 

even when prescriptive analytics is challenging, e.g., in the context of more complex 

interventions, comparative analytics serves as an essential building block. 

The aim of prescriptive analytics is to prescribe interventions that would improve systems’ 

performance. The holy grail of analytics is finding such a novel intervention. Prescriptive 

analytics requires inductive reasoning to out-of-sample results under different interventions. 

Decision makers who use prescriptive analytics properly to develop recommendations no 

longer require a leap of faith when they implement them, as they consider and understand the 

important factors that affect relevant performance measures. Indeed, prescriptive analytics 

that is well supported by descriptive, predictive, and comparative analytics not only allows the 

decision maker to reduce risks from new interventions but also allows her to manage these 

risks. Fundamental prescriptive analytics problems have complex relationships between 

interventions and performance. Such complexities are especially common when these 

relationships cannot be measured without making specific assumptions or when they are 

subject to high uncertainty. In these cases, tools that model the relationships are essential to 

prescribe effective decisions. Prescriptive analytics can use robust optimization guided by 

existing data to compare and predict the potential impact of different interventions on 

performance. The challenges in prescriptive analytics include the challenges of descriptive, 

predictive, and comparative analytics.  

We note that these four aspects of analytics are helpful conceptually but are typically too 

narrow to encompass the scope of any analytics project in practice. For example, a descriptive 

analytics project can be thought of as the study of history. History is interesting, but much of 

the motivation to study it comes from the light it sheds on future events. Similarly, descriptive 

analytics is interesting, but much of the motivation to perform it comes from the light it sheds 



on future effective management interventions. As another example, much of the focus of 

predictive analytics, including artificial intelligence and ML, is on expressing how changes to 

some variables affect dependent variables, i.e., a relevant performance measure. Once 

managers trust the predictive model and the causal effects behind it, they can compare the 

effect of different interventions on the dependent variable and may prescribe interventions.  

1.2 Phases in Business Analytics Projects: From Descriptive to Prescriptive Analytics 

Another important factor in the conceptualization of these four aspects of business analytics is 

their timing within the progression of a business analytics project, as depicted in Figure 2. Most 

business analytics projects progress over time, from descriptive to predictive, comparative, and 

prescriptive phases. Nevertheless, business analytics may focus on one of these and use tools 

and models tailored to pursue it. 

Consider the phases in a business analytics project focusing on a congested service system. The 

descriptive analytics phase of the project will examine past observed performance measures of 

the system and address such questions as: “Is the process performing as designed? Do the main 

flows in practice tightly correspond to the intended flows? Are bottlenecks where we expect 

them to be?” In a hospital emergency department (ED), descriptive analytics can lead to 

observations such as: demand is highest on Mondays from 4pm-8pm, chest pain is the most 

common complaint, and performance measures (such as length of stay, waits, and time to 

physician initial assessment, all for different patient types) depend on the ED census and the 

nurse to patient ratio.  

The predictive analytics phase will consider future performance of the system and address such 

questions as: “What throughput can we expect? When we expect the system to be the busiest? 

What would the state of the system be in the future, in terms of arrival processes and 

distributions of performance measures?” In an ED, predictive analytics would predict 

performance measures, for example, using a simultaneous equation model, as a function of the 

time (e.g., Monday, 4pm-8pm, winter), patient mix (e.g., percent of patients with chest pain), 

the ED census, the nurse to patient ratio, and number of busy beds in the wards. 



Figure 2: Timing of Descriptive, Predictive, Comparative, and Prescriptive Business Analytics 

 

The comparative analytics phase will consider how various changes would have impacted 

(retrospective) or will impact (prospective) performance measures and address such 

retrospective questions as: “What would the performance of the system have been if a specific 

improvement project had not been implemented (i.e., express counterfactuals)?” Prospective 

analytics will address such questions as: “What impact can be achieved by adding new 

resources to the system? What impact can be achieved from workflow changes?” In an ED, 

comparative analytics would consider various new workflows and staffing changes. New 

workflows can include adding a dedicated track for patients with chest pain, reducing the 

census and waiting times, or having a physician perform triage, reducing the time to physician 

initial assessment. Staffing changes can include different shift schedules for nurses and doctors 

and/or hiring nonmedical personnel to ease the load of medical personnel during rush hours. 

The analysis of such changes could use a causal model or simulation (calibrated with data) to 

capture their respective impacts on performance measures.  

At the prescriptive analytics phase, the expert will consider how to best manage future 

performance of the system and will address such questions as: “What is the best staffing 

procedure to follow? What is the best customer routing?” In an ED, prescriptive analytics would 

search for the optimal nurse and doctor shift schedules and provide guidelines on when to call 

and pay for extra medical or nonmedical personnel. The creation of this flexible staffing process 

requires the knowledge obtained from the descriptive, predictive, and comparative phases of 

the project.  The prescriptive model aiming at cost minimization subject to constraints on 
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performance measures would be informed by current data (e.g., census), an arrival prediction 

model, and established dependencies of performance measures in the patient mix, number of 

busy beds in the wards, nurse to patient ratio, and so on. 

Good progress through the descriptive, predictive, and comparative analytics phases of the 

project will help decision makers understand the possible and preferred trade-offs among 

different performance measures and the cost of achieving them. Such an understanding is 

essential to ensure the prescriptive analytics phase of the project is effective. Without such an 

understanding, analysts may full into the trap of optimizing the performance, given a predictive 

model, a simplistic approach that is often inappropriate. 

1.3 Outline 

In the next sections, we stratify our discussion of analytics research in healthcare along 

descriptive, predictive, comparative, and prescriptive lines, with the caveat that papers focusing 

on, say, descriptive analytics often include predictive, comparative, and prescriptive analytics as 

well. We then discuss research on queue mining and show how this line of research progresses 

from descriptive to prescriptive analytics. We conclude with thoughts on the future 

contributions of operations research and management science (ORMS) to business analytics.  

2. Descriptive Analytics 

Descriptive analytics traditionally focused on studying well-stated existing problems. During the 

study, we often found alternative relevant problems, but data analysis was thought as a part of 

solving a given problem. In contrast, (Simchi-Levi, 2014) suggests modern data analysis allows 

us to define and find hidden problems and to learn from best practices. 

The first step in learning from practice is being able to map practical phenomena. Some of this 

mapping raises the need for theoretical models and their study. Below, we discuss descriptive 

analytic work on cost estimation, the interaction between service and waiting times, scheduling 

policies, and patients’ service path. 

2.1 Estimating the Cost of Delay 

One of the most fundamental questions in services is “What is the cost of delay?” Indeed, the 

cost of providing service or delaying it is often not easy to express. Access to data on decision 



making allows us to impute such cost. That is, rather than calculating the cost of delay, we can 

compare delays in practice and reverse engineer from them the delay cost that would make the 

practice optimal, i.e., the implied delay cost of the current practice. We believe similar 

approaches can be used to estimate the imputed cost and implication of different decisions. 

(Ding et al. 2019) addressed this question for EDs. They investigated patient routing and 

prioritization and how these are affected by patients’ triage levels. They considered patient 

level data for 20 months of visits in four EDs and reverse engineered the delay cost the 

hospitals attributed to patients based upon their observed prioritization. They discovered that 

different triage levels imply different delays, and the current practices reflect a piecewise linear 

and concave delay cost. Specifically, while within a triage level, service is typically administered 

in a first come first serve fashion (FCFS), once patients’ wait is too long (e.g., above the wait 

time required), their priority decreases. Moreover, it does not appear that the level of 

complexity of the treatment (measured as total service time) impacts patients’ priorities. This 

study does not relate specific delay cost to different patients, but quantifies the relative cost of 

wait for different patient classes. Understanding these relative costs allows decision makers to 

improve the incentives provided to service providers. The example provided highlights the 

inadequacy of using thresholds on waiting times as the sole measure of the performance of 

EDs. 

2.2 Service and Wait Times 

Analyzing service systems requires an understanding of arrival, service, and wait times. 

Standard assumptions of queueing theory are that arrival and service times are independent of 

each other, and the realized delay of previous and current customers. However, several studies 

show that service times and exceptional services impact wait times and future service times. 

The study of the impact of delay in entering ICU on the service time, captured via length of stay, 

in (Chan, Farias, Escobar, 2016) showed that, for some patient types, there is a positive 

correlation between delay and service times. As longer service times increase congestion and 

delay, a dangerous positive feedback in ICU systems is created. These researchers developed 

theoretical and simulation models to show that the positive correlation between delays and ICU 



service time increases congestion. This finding suggests ICU managers should not ignore this 

correlation and the feedback it creates. 

(Deo and Aditya, 2019) studied an eye care provider in south India with a transient service 

network. That is, all people arriving during a day are served and leave that day. (This differs 

than, say, an ED, where the next shift may complete work left over from a previous one.) They 

investigated control of resources and arrivals in view of balancing wait times with hours and 

effort of work. They used four months of data for visits at several branches and different 

doctors. Their patient level regression analysis showed that clinics work more slowly at the 

beginning of the day and faster later in the day.  The motivation for this policy is that the 

beginning of the day is used to fill all buffers, such that later in the day the faster system has no 

idling within the network. Such a change of speed implies busier systems would have worked 

faster (than less busy systems) during their slow period.  An important implication of this policy 

is that patients who arrive earlier in the day typically wait longer than patients who arrive later 

during the day. The researchers’ data-calibrated simulation showed that such a change in work 

speed reduces the time to complete all work and the average length of stay compared to fixed 

work speed. 

Another interesting finding was reported by (Bavafa and Jónasson 2020). They found that 

ambulance teams who treated disturbing cases, e.g., with death, slowed down their work 

during the rest of the shift as a method of coping. The slowdown occurred more in less 

standard parts of their service and depended on the team’s years of experience.  

2.3 Scheduling Policies 

Scheduling policies that dictate customers’ priority and routing represent interventions with a 

potentially strong impact on performance in service systems. In this section, we discuss how 

best practices inform theory on potential scheduling policies. 

The data analysis reported in (Baron et al. 2017) for a firm providing annual healthcare 

checkups enables learning from practice. The annual checkup process reported by these 

researchers involved patients visiting several (12-20) different service centers, for such 

procedures as blood tests, stress tests, hearing tests, reviews with a doctor etc. The transaction 



level data on waiting and service times showed some “strange” practices. Specifically, in many 

cases, patients were waiting for a service center while it was idle, or to use the opposite 

terminology, a service center was waiting for a patient while she was idle. The authors dubbed 

this practice “strategic idling”.  

Queueing theory establishes that non-idle policies are optimal in reducing the total wait and 

sojourn times, so this documented practice of strategic idling raises questions about possible 

benefits. (Baron et al. 2017) argued the psychology of queues implies that the perception of 

wait may differ from the objective wait. In the context of patients (customers) moving through 

several service centers, the perception of wait is affected by two aspects. The first is the macro 

measure of total wait in the system, i.e., aggregated over all service centers; the second is the 

micro measure of wait for any specific center. When customers experience an increase in 

waiting for a specific center, they become unhappy. In this case, an in-depth study of the data 

showed that while, as predicted by queueing theory, eliminating strategic idleness would 

reduce the total wait, it would significantly increase the percentage of long waits at specific 

centers. Indeed, (Baron et al. 2014) established that strategic idling could improve the micro 

level and thus perceived service level. 

The suggestion that strategic idling may improve the perceived service level raises the question 

of how to implement it in practice. (Baron et al. 2014) presented a family of threshold-based 

controls to balance long waits among several sequential centers. In later work, (Baron et al. 

2017) extended this family to allow such a balance in a general network of service centers.  

In-depth descriptive analytics pointed to the phenomenon of strategic idling, a previously 

unknown practice and broadly considered to be counter-productive. To understand the 

motivation for strategic idling, the authors used a comparative analytics approach: they found 

simulation and queueing analysis of stylized models helped to quantify the benefit of strategic 

idling. The insights generated by the comparative analytics supported prescriptive analytics. 

Overall, the business analytics approach demonstrated in (Baron et al. 2014) and (Baron et al. 

2017) allowed  a solution to be prescribed: a systematic and effective method to implement 

strategic idling to improve the service quality as perceived by customers. Importantly, this work 

highlights the interaction among the different aspects of analytics discussed in Section 1. 



In many cases, the planned scheduling policy and the realized one differ. This possibility has 

been investigated by both (Ibanez et al 2018) and (Chan et al 2021) in the context of doctors 

who read radiological (e.g., CT, X-rays) images off-site. In (Ibanez et al 2018), the doctors were 

assigned random images; they were expected to process these in an FCFS manner, and their 

compensation scheme was unclear. The researchers tested several hypotheses using 

transaction level data on teleradiology for over 2.75 million cases from July 2005 to December 

2007. Their main conclusion was that the radiologists deviated from the FCFS scheduling over 

40% of time. These deviations were mainly motivated by doctors’ wish to work on shorter jobs 

first or to batch similar tasks. Their econometric analysis used instrumental variables to show 

that such deviations harm productivity. They suggested the seeking time required to deviate 

may cause this degrading performance. Moreover, they found that more experienced doctors 

deviated less and were less harmed by deviation. However, their analysis ignored the 

implication of deviation in work on waiting time. 

In contrast, in (Chan et al 2021), the doctors chose images from a common pool, were expected 

to process images in accordance to priority requirements (i.e., waiting times are relevant), and 

were compensated based on work completed. They used about 2.65 million cases processed by 

over 150 radiologists at close to 100 hospitals from January 2014 to July 2017. They found the 

imbalance between pay and workload could cause low priority jobs to overtake high priority 

ones. Using instrumental variables, they showed that waits decreased (increased) in the pay-to-

workload ratio for low (high) priority jobs. Their results suggest the design of payments scheme 

should consider a “bang for the buck”, or here, dollar per minute, compensation for jobs. When 

incentive structures ignore this strategy, service providers may change the order in which they 

process jobs. 

2.4 Service Path 

Much effort, both in literature and in practice, has been dedicated to understanding customers’ 

lifetime value as it relates to customer pathways and customer segmentation. In the context of 

healthcare, customer pathways often depend on segmentation based on diagnostic stage, such 

as triage.  



For example, in EDs, the first segmentation occurs at the triage level. Triage decisions and their 

connection to load was investigated by (Chen et al. 2020). They used patient level data for over 

65,000 visits. They found an increase in load caused a significant increase in triage level 

assignment. Patients were triaged as more severe, and the common disposition was “to be 

admitted.” These findings contrast with those of (Richardson 1998) for an Australian hospital. 

An important takeaway from (Chen et al. 2020) is that an increased load in the ED creates a 

positive feedback that further increases the load. Admitting more patients increases bed 

blocking from the wards, and this increases the load in the ED. Therefore, it is important to 

have accurate triage that is independent of load. 

In healthcare, a best treatment pathway is often provided to doctors as a recommended course 

of action. (Diamant et al. 2014) considered what impacts patients’ clinical pathway towards 

bariatric surgery, a common tool in fighting obesity. The process leading to bariatric surgery 

includes several pre-surgery steps, where attrition may occur. Using three years of data, the 

authors demonstrated that specific groups of patients may be less likely to complete the entire 

process. Better management of the process for these groups can improve healthcare outcomes. 

3. Predictive Analytics 

Much of predictive analysis is focused on forecasting. As forecasts support long- and short-term 

business planning, forecasting is one of the fundamental activities of any business. Social 

platforms and the Internet provide new data sources that, when properly combined with 

operational data, improve both accuracy and interpretability of forecasting models. Moreover, 

modern algorithms, based upon e.g., ML, lead to improved forecast accuracy.  

We next discuss some research on cost prediction, on forecasting the spread of infectious 

disease, and on demand forecasting. 

3.1 Forecasting Cost  

Provisioning of service is costly, so cost management is extremely important in service systems, 

where cost of personnel is often a critical factor. The effective provisioning of service also 

requires paying costs in areas most likely to benefit the service. Moreover, investigating the 

trade-off of interventions, as a part of prescriptive analytics, requires an understanding of their 



respective costs. With these questions in mind, estimating the cost of service may be critical to 

business analytics projects. 

An example of the use of modern tools and data in the context of cost forecasting is in 

(Bertsimas et al. 2008). These authors used classification trees and clustering algorithms to 

estimate healthcare costs for 200,000 out-of-sample people with medical insurance. They 

demonstrated that past cost helps predict future cost, and that specific medical information is 

helpful to estimate the cost of high-cost patients but is not helpful for other groups. This 

example nicely demonstrates the difference between a predictive model and a comparative 

one: past costs are correlated with the future cost, so they can be used to predict it; but as past 

costs do not cause the future cost, they cannot be directly used to analyze interventions to 

impact the future cost. 

3.2 Forecasting the Spread of Infectious Diseases  

Forecasting in healthcare includes predictions of the spread of infectious diseases and intensity 

of demand for emergency treatment such as cardiac arrest requiring defibrillators. We note 

that these examples require a spatial demand prediction. Moreover, such predictions are 

essential to support prescriptive analytics; for example, decisions on the location of 

defibrillators require demand forecasting. The outbreak of Covid-19 demonstrates the 

importance of spatial models for forecasting the spread of infectious diseases, for informing 

decision makers on the right social distancing level to recommend in different regions, and for 

designing relevant travel restrictions. 

One of the most common infectious diseases is influenza. The combination of data on 

electronic health records and on past flu activity levels was traditionally used to provide 

temporal and spatial predictions of flu levels. In recent years, people have begun to search for 

medical information on-line. (Yang et al. 2017a) showed that a dynamic multivariate regression 

model that combines these data with Internet (Google) searches for relevant terms can 

improve predictions (at a 5% significance level). It provides an accurate enough forecast, i.e., 

forecast that can be acted upon, for four weeks rather than two weeks ahead of an increase in 

flu activity. Such improved accuracy increases the allowable response time and is equivalent to 



a similar reduction in lead time with major operational consequences. For example, flu shots 

can be delivered to flu-prone areas, given to populations at risk, and thus prevent a pandemic. 

The approach in (Yang et al. 2017a) was extended in (Yang et al. 2017b) to predict the activity 

level of dengue fever. The authors aimed at providing a disease surveillance system to predict 

dengue outbreaks and support interventions. They combined traditional data with Internet 

searches and had good accuracy; their approach worked well in areas where dengue fever 

levels were significant. 

3.3 Demand Forecasting 

Forecasting demand for healthcare services, such as arrivals to an ED or for emergency services 

resulting from cardiac arrest, can be improved with an increase in data availability. Moreover, 

the availability of adequate responses, e.g., capacity of ED or location of responders for 

emergency services, can be optimized using data-driven forecasts. In this section, we discuss 

recent analytics work on such forecasting. 

(Chan et. al, 2013) considered the location of defibrillators in Toronto. They showed that the 

while the spatial distribution of cardiac arrest has some correlation with population density, the 

correlation was not perfect. Thus, they recommended considering the location of past cardiac 

arrests when locating defibrillators. In more recent work, (Chan, Demirtas, and Kwon 2016) 

developed optimization models that also considered bystanders could employ defibrillators. 

That is, their forecasts jointly considered demand occurrence and the possible availability of a 

provider (although their model for the latter is not data driven). We note that forecasting both 

demand and servers’ availability has attracted more attention in recent years with the increase 

in the sharing economy and matching; see Hu (2019) and references therein. 

Demand rate for many services, including EDs, has patterns of seasonality, as well as weekly 

and daily fluctuations. Forecasting this nonstationary demand process is important, as it affects 

planning and day to day operation.  (Chen et al. 2021) proposed a nonhomogeneous Poisson 

process with a rate that is the sum of several sinusoidal waves. They explained how to estimate 

the number of different waves and their rates and then demonstrated their methodology using 

data for 170,000 arrivals over two years at an ED in an academic hospital in the US. They 



predicted the arrival rates at the ED for both acute and non acute patients (they ignored 

prediction for emergency patients as these were rare). They also demonstrated how to use 

their method for staffing. 

4. Comparative Analytics 

Comparative analytics often benefits when there are several similar business units, such as 

hospitals. Investigation of implemented interventions in one unit can be improved by an 

understanding of the impact of this intervention in other units. Proper comparative analysis of a 

known intervention supports its extension to other business units. Such a comparison is useful 

to help manage service and wait times. 

In this section, we discuss some research on cost effectiveness of interventions, interventions 

that impact the service discipline and waiting times, problems of resource matching in 

healthcare, focusing on blood transfusion, and the service path and its dependence on 

diagnostics. The work mentioned herein includes examples of both retrospective and 

prospective comparative analytics. 

4.1 Cost Effectiveness 

One of the most important inputs into the effective management of any operation is the cost 

benefit analysis of different interventions. The most common interventions in services are 

related to changes in capacity (e.g., moving shifts, adding capacity, or changing processing 

times) or processes (e.g., scheduling or changing working processes, such as providing 

vaccinations). Evaluating the impact of such interventions is important for both retrospective 

and prospective interventions.  We next discuss recent analytics work on the cost effectiveness 

of large scale immunization. 

(Hutton, So, and Brandeau, 2010) performed a cost‐effectiveness analysis of prospectively 

providing free hepatitis B vaccine to children aged 1 to 19 years in China. To overcome the 

absence of counter-factual data, they developed a Markov model for disease progression and 

infections. This model helped to estimate the impact of vaccinations on cost, quality‐adjusted 

life years, and societal perspective. To quantify these measures, they used publicly available 

data published by the Chinese Ministry of Health, in peer‐reviewed Chinese and English 



publications, and by the GAVI Alliance. Their investigation and sensitivity analysis demonstrated 

that offering free hepatitis B vaccination for 150 million susceptible youth in China would be 

beneficial; it could reduce infections by 8 million and deaths due to hepatitis B by 65,000.  

Brandeau with coauthors in a series of papers (Malloy et al. 2020 a, Claypool et al. 2020) 

presented cost effectiveness analysis using similar principles: developing disease infection 

models, calibrating these using data (often publicly available), and providing detailed sensitivity 

analysis of different interventions. (Malloy et al. 2020 b) discussed the importance of model 

structure in predicting effectiveness of medical interventions. 

4.2 Service Discipline and Wait Times 

Comparative analytics work in the context of improving wait times examines different service 

disciplines and/or routing policies. One of the most useful tools for this is simulation. In this 

section, we discuss recent analytics work on the impact of the service discipline on service 

times and thus on waiting. 

One of the main challenges of analysing the impact of interventions is that counterfactual data 

do not exist. For example, for patients who have had an intervention, there are no data on their 

experience in the absence of this intervention. Therefore, it is hard to establish that the 

intervention caused an observed effect. (Song, Tucker, and Murrell, 2015)  investigated the 

impact on length of stay in the ED of operating a pooled versus a dedicated doctors’ queue. 

From their patient level data, they found that operating a dedicated queue reduced the length 

of stay by 17%. This contrasts with queuing theory’s fundamental insight that a pooled queue 

should be better. Their study was retrospective; they could use a difference-in-differences 

approach to support their results because the intervention that changed the queuing system 

was implemented in only one part of the ED. 

(Bayati et al, 2017) considered EDs where high acuity patients received a pre-emptive priority 

over low acuity ones. Their empirical evidence showed low-acuity patients increased the wait 

times of high-acuity patients. This finding was clear in EDs with non pre-emptive priority 

discipline, but it contradicts the theoretical predictions of pre-emptive priority queues, see e.g., 

(Wang, Baron, and Scheller Wolf, 2015). (Bayati et. al 2017) estimated this increase using data 



from several hospitals and a quasi-randomized experiment, i.e., a prospective study, 

implemented in one hospital. In their experiment they slightly changed the wait time data 

shared with incoming patients. These data changed non acute patients’ decision on whether to 

join the ED or leave it without being seen. This quasi-randomization corrected the existing bias 

in data and supported their findings. They argued low-acuity patients delay high-acuity patients 

due to pre-triage delay and set-ups required between pre-emptions (e.g., changing sheets). 

The impact of delay announcements on hospital wait items was also studied in (Dong, Yom-Tov, 

and Yom-Tov 2019). Their retrospective study used three months of data on wait times posted 

by over 200 EDs in the US and data from a web search for ED delay information. They showed 

that posting wait times balanced the waits among hospitals, and this impact decreased with the 

distance between hospitals. Using difference-in-differences, they compared duration when EDs 

did not report their wait times with duration when wait times were reported. They found the 

balancing of wait times was impacted by information sharing; i.e., wait times were higher when 

no such information was provided. 

Another important decision in EDs that helps control wait times is related to patients’ diversion. 

This problem was investigated by (Xu, and Chan 2016). These authors considered how to use 

arrival forecasts to divert patients from an emergency department.  The traditional, static policy 

diverts patients whenever their total number in the ED is above a threshold.  They showed that, 

given practical forecasts' accuracy and horizon, a dynamic policy is better than a static one in 

reducing waiting times and patients’ abandonment (leaving without being seen). Their 

diversion decisions combined this threshold with additional diversions of patients that initiated 

long busy periods based on the forecast. The authors motivated this policy by analyzing stylized 

models and then demonstrated its efficacy using a simulation based on data from ED records in 

the SEEStat database (SEE-Center 2009) for 2004. Their retrospective simulation model 

compared the impact of different diversion decisions on waiting time and patients’ 

abandonment. They demonstrated that the use of practical forecasts could improve the 

performance of busy EDs. 

The Erlang R model, where R stands for re-entrant, was introduced and analyzed by (Yom-Tov 

and Mandelbaum 2014). Their motivation for the study of this queueing model stemmed from 



healthcare applications such as radiology and EDs, where patients often return to the service 

provider after going through some additional tests. They showed that in steady state, the 

Erlang R and Erlang C (i.e., the standard M/M/C queue) models were equivalent (after 

appropriately changing the arrival or service times). Nevertheless, in the presence of time 

dependent arrivals, staffing recommendations based upon the Erlang R model led to 

significantly more stable performances (measured as probability of wait). They retrospectively 

demonstrated these results via the detailed simulation from (Marmor and Sinreich 2005), 

calibrated using empirical data from an ED. They enhanced their results using fluid and diffusion 

models and showed the Erlang R model was also useful in planning for staffing during a 

chemical event mass casualty drill.  

The simulation models that are common in the ORMS community, such as the detailed 

simulation models in (Marmor and Sinreich 2005), are useful in comparative studies. Such 

models allow us to simulate different interventions and estimate their impact on performance 

measures, such as wait times. However, as highlighted in (Carter and Blake 2004) developing 

such simulations is often very hard. Therefore, their usage in practice is not very common. 

These authors highlighted the difficulties of gathering the right data to calibrate the simulation 

(often relevant data, e.g., on resources, are missing), the lack of scalability (a simulation model 

tailored to one hospital is not easily transferable to another one), and the lengthy development 

times (often in the order of months and years). Yet, they argued that once a proper simulation 

model becomes useful, it allows prospective comparative analytics and can thus serve decision 

makers for a relatively long period, including in support of decisions that were not initially 

intended to be addressed by the simulation. 

We note that much of the theoretical development in performing comparative analytics using 

simulation, as well as casual models and AI, is done outside the ORMS community. As an 

example, (Zheng et al. 2018) focused on counterfactual and causal effects in view of different 

patient characteristics. They tested the comparative performance of their estimator with a 

simulation carefully calibrated to create “real” datasets. They extended the analysis of (van der 

Laan and Petersen 2007). This earlier work provided a statically optimal patient-specific 

intervention rule in the presence of missing data. (Zheng et al. 2018) proposed and explained 



how to implement a targeted maximum likelihood estimator of the impact of intervention on 

specific individuals in support of prescribing tailored medical interventions. Using the concept 

of targeted maximum likelihood estimator in support of comparative and prescriptive analytics 

may benefit ORMS professionals in their business analytics work.  

An additional tool for comparative analytics is learning from best practices and best performers. 

Such learning can be useful for similar business units or employees. (Song et al. 2017) 

retrospectively investigated public versus private relative performance feedback (RPF) at the 

employee level in two EDs. The feedback focused on the length of stay of patients and, in both 

EDs, best practices were shared by management. One ED started to publicly post the RPF on is 

physicians; the other did not. (Song et al. 2017) compared results for both EDs. They found 

improved productivity in both hospitals that could likely be attributed to the RPF process and 

the general feedback provided. Publicly sharing the RPFs further improved productivity and 

reduced variance (i.e., low productivity workers improved more than medium productivity). 

Importantly, these improvements were not at the cost of other performance metrics (such as 

worker attrition). 

We note that the essence of the RPF process is similar to descriptive analytics:  mapping 

practices in order to study what practices work well, how to use them where appropriate, and 

how to further improve existing processes in an organization.  

Another common intervention is the use of new technology. In a retrospective analysis, (Lu, Rui, 

and Seidmann, 2017) focused on the impact of introducing new information technology (IT) in 

long-term care facilities (LTF). Much of this technology is focused on reducing the workload in 

tracking and administering medications, i.e., reducing service times. The authors retrospectively 

studied the impact of implementing IT on nurses’ staffing. They developed a stylized model that 

related the level of IT to quality and revenue in the LTF. They tested their model using 

regression models fitted to over 7 years of data on nurse staffing at LTF. They found that after 

employing new IT, staffing dropped in high-quality LTFs but went up in low-quality LTFs. These 

impacts were related to increased quality and changing patient mix and were driven by 

different substitutability and complementarity of IT with labor. 



4.3 Resource Matching 

In several healthcare applications, resource matching can be thought of as double-sided queue. 

Such applications include blood transfusion and organ transplants. They are different from 

standard resource matching, such as the matching of elective surgeries to operating rooms. 

Whereas in the first matching problems, both the supply (donations) and the demand (patients) 

sides have uncontrolled arrivals, in standard problems, one of these sides, typically the supply, 

e.g., operating rooms, is controllable. In what follows, we discuss recent analytics work on 

blood transfusion. We found most analytics models for organ transplant include more 

prescriptive content and thus discuss these in the next section. 

 (Sarhangian et al. 2016 and Sarhangian et al. 2017) analyzed practice and theory for the use of 

red blood cell transfusion. Such transfusions are required for many medical treatments, 

including surgeries. They considered the impact of different ordering and allocation policies on 

the outdate rate, shortage rate, and the age distribution of transfused blood. (Sarhangian et al. 

2016) developed a simulation based on data for over 10,000 transfused units from a Canadian 

hospital. Their initial retrospective analysis characterized the polices used and found that if 

blood were allocated in a first in, first out manner, and an appropriate order-up-to level was 

chosen, the average age of transfused blood could be reduced by 30% without impacting the 

other measures. In a prospective study, (Sarhangian et al. 2016) focused on threshold-based 

allocation policies. They analyzed a stylized queueing theoretical model, derived performance 

measures, and characterized the trade-off between age and availability for such policies. They 

suggested the potential effect of distribution of the age of transfused blood on healthcare 

outcomes can be studied and argued that threshold-based policies are effective when reducing 

the shelf-life significantly impacts availability. 

4.4 Service Path and Diagnostics 

A common concept in healthcare services for chronical diseases is the clinical pathway. While 

there is often a recommended clinical pathway, patients may not always follow it (e.g., treating 

physicians recommend an alternative path, or patients skip some steps). In this context, data 

can help in comparing the clinical results of patients who have followed different pathways. As 

the pathway also depends on diagnostics, the choice of when to use different tests is relevant. 



In the context of EDs, this choice may be related to the relevant congestion in the system. We 

therefore discuss recent analytics work on service path and diagnostics. 

A data-driven robust optimization approach was used to measure the clinical pathway 

concordance for colon cancer patients in (Chan et al. 2019). They used 1 year of patient level 

data on 763 patients’ pathways and survival (over 4 years) to calibrate their model and 5 years 

as test data (with over 4,000 patients). They retrospectively compared survival results for 

patients with different concordance levels and showed that higher concordance levels with the 

recommended pathway were correlated with better survival chances. They considered several 

other methods to measure the concordance level and concluded that their metric performed 

better than the other methods. The study suggests the benefit of the recommended pathway. 

Future interventions could focus on encouraging higher concordance with the recommended 

pathway and on adequate responses for patients whose treatment does not follow this 

pathway. 

The service path often depends on results from diagnostic tests. While business analytics work 

should take the results of these tests as given, there may be a place to use analytics in the 

choice of testing. Focusing on the service path in EDs, (Shi et al 2020) studied the adoption of 

diagnostic tests by jointly considering their medical and operational benefits (measured as 

average length of stay). They demonstrated that some diagnostic tests are effective for a single 

patient from a medical perspective but may add congestion that harms the overall health 

delivery process and thus should not be adopted in practice (by the same token, some tests 

that may be less effective from a medical point of view for a single patient may be effective 

overall, as they reduce congestion). They studied this problem using a Markov decision process 

when considering the routing in the ED. They used data for over 10,000 patient visits; about 

35% of these were suspected to have some level of pulmonary embolism (i.e., blood clot that 

blocks an artery in the lung). Diagnosing the occurrence of pulmonary embolism requires a CT 

scan, a congested station in the ED, and such a test may be prevented if a D-dime test suggests 

no pulmonary embolism is present. They prospectively compared several different paths in 

accordance with different levels of usage of the D-dime test and demonstrated that with proper 



routing, the adoption of this test may be beneficial to the patients visiting the ED (e.g., by 

reducing the wait time for CT for stroke patients). 

5. Prescriptive Analytics 

One of the potentially most impactful premises of data availability is the ability to tailor 

services. Tailored offerings could be based on more detailed customer segmentation, 

something that is feasible with big data. In the context of healthcare, finer-grained 

segmentation supports personalized medicine and improved service path. Operations research 

tools could also be used to improve diagnostics and patients’ response, e.g., when the response 

depends on a delay in the diagnostic time.  

We next discuss research on the following: scheduling policies, policies for resource matching 

for organ transplants, preferred service paths for patients, and improvements in the operations 

of diagnostic services. We note, however, that most of this work is traditional ORMS work and 

does not carefully depict the progression from descriptive, to predictive and comparative 

analytics on the way to prescriptive analytics. 

5.1 Scheduling Policies 

 (Jiang, Abouee Mehrizi, and Van Mieghem, 2020) focused on scheduling patients waiting for 

MRI. They considered an MRI scheduling problem for 72 hospitals in Ontario, Canada. They 

used 30 million patient-level records for the period of January 2013 to December 2017. In 

consideration of the inherent uncertainty, and as is common in healthcare, the service level for 

MRI tests was defined as the tail probability of the wait time (e.g., policy makers aim at keeping 

the percentage of patients who wait more than a day at or below 10%). They used ML to 

estimate demand and service, as well as to cluster hospitals within geographic regions while 

considering traveling times. They showed that the impact of (the right) pooling was larger on 

the variance of waits (and thus tail probabilities) than on their mean and could be quite 

significant. 



5.2 Resource Matching 

The process for allocating livers to transplant patients was investigated in (Akan et al 2012). 

They used a fluid model for liver transplant policies while considering different objectives and 

performance measures, including total quality adjusted life years, deaths, and number of 

wasted livers. Using shadow prices, they proposed different polices based on, e.g., an objective 

that was a convex combination of two different measures. They used 14 years of data from the 

united network for organ sharing to validate, cross validate, and then test the efficacy of their 

suggested policies using simulation. They found their recommended policies may be better 

than the one used in practice for measures such as total quality adjusted life years and number 

of wasted livers, but may increase the total number of patient deaths while waiting for 

transplant. 

The process for allocating a kidney to patients was considered by (Ata, Ding, and Zenios 2020). 

They suggested several possible allocation policies based upon a combination of fluid analysis 

and the achievable region approach. They used 5 years of data to estimate kidneys' quality 

scores; for patients, they used data on their initial health score, health decay curve, mortality 

rate for each health level, and quality of life from not matching (they normalized the quality of 

life after each successful matching to 1). They showed that quality of life measures can be 

improved by prioritizing healthier patients for high quality kidneys, while the less healthy 

receive low quality kidneys. 

5.3 Service Path 

Big data availability means prescriptive analytics on service paths can support personalized 

medicine via decision support systems. These systems are based on observed results after 

treatment by experts. There are two important challenges in this context. The first challenge is 

that errors made by experts may become the recommended course of action. The second is 

that following a newly constructed recommendation may result in newly constructed patient 

characteristics that have never been observed before. Then, automated systems that are 

calibrated with observed data can provide no recommendation. 



Treatment for chronic diseases is perhaps the primary example of the importance and 

feasibility of personalized service paths. (Bertsimas et al. 2017) focused on Type 2 diabetes. The 

authors used detailed electronic medical data for over 10,000 patients (each with at least one 

year of data in the system); these data included demographic information and medical and 

treatment histories. For each patient, they used a K nearest (with weighted distance) neighbour 

regression to find a line of therapy (drug regimen) that was likely to be best for her (the Lasso 

and Random forest algorithms did not perform as well). A change in the line of therapy was 

recommended if the predicted benefit of the likely best therapy was significant. In the absence 

of a clinical trial, they used out-of-sample data to evaluate their recommendations. In the 

31.8% of cases where the recommended therapy differed from the observed one, they 

estimated the medical condition by the average observed condition for neighbours who 

received the recommended therapy. The estimated average reduction of the mean post-

treatment glycated hemoglobin based on their recommendation was 0.44%. 

A main limitation of their work was their focus on controlling a unique medical measure 

(glycated hemoglobin); control of several measures would require a significantly larger data set. 

Nevertheless, their approach – performing data-driven patient segmentation—can be used to 

create an effective decision support system for physicians. Moreover, with enough data, novel 

treatment combinations can be extracted (based upon prediction of their efficacy). Such 

extraction would reduce the cost of future clinical trials and the time to market of the 

recommended treatments.  

The quality of the service path is often hard to quantify, and expert opinions or surveys are 

often required to measure it. (Bertsimas, Czerwinski, Kane, 2013) used a combination of expert 

opinion and analytics to measure the quality of service provided. They used data on insurance 

claims for medical services and medications. The expert ranked the quality of care for 100 

patients and a logistic regression model trained with these data was used to identify patients’ 

whose quality of care should be reviewed. The out-of-sample validation of over 30 patients 

suggested the use of the scalable logistic regression model may be helpful in practice. Their 

approach provides a scalable service quality measure based on a small sample from expert 



opinion; this allows cases that can benefit from an expert review of the service delivery process 

to be flagged. 

Learning from experts can also be applied to radiation therapy for cancer. Experts in this field 

try to balance several objectives, such as delivering a high dose to the tumor but a low dose to 

healthy tissue. As there is no clear way to quantify how to proceed with a specific radiation 

treatment, these treatments are considered knowledge-based, and an expert opinion is 

required. Providing automated recommendations for such treatments is thus very challenging. 

Inverse optimization was used by (Chan et al. 2014) to determine which mathematical 

formulated objectives were best aligned with expert decisions on 12 prostate cancer patients. 

An important contribution of their work was the identification of a relatively small number of 

objectives to consider in the treatment plan. Combining these objectives with patient clustering 

may help create a decision support tool to support treatment planners and oncologists in 

quickly coming up with effective treatment plans. (Boutilier et al. 2016) studied different 

approaches to treatment plans based on prostate cancer patients’ data. Specifically, they 

compared (i) prediction using the best plan from a database with existing clinical plans, (ii) 

principal component analysis and multiple linear regression, and (iii) objective function weights 

using logistic regression or K-nearest neighbors. They investigated the minimum required 

sample size of the training set to achieve errors similar to these from a sample with 200 plans. 

They showed that different methods required different sample sizes. Therefore, for more 

complicated therapies where data are more complex, there may be a trade-off between the 

learning method and the quality of the generated recommendation.  

Another consideration of service path was by (Ding, Gupta and Tang 2020). They considered 

appointment scheduling when some customers require a follow up. They investigated the 

impact of pre-booking appointments to a priority queue for some follow-up appointments. 

They focused on throughput maximization while considering that some appointments were 

unused, due to customers either not showing up or no longer needing them. They also 

considered balking due to long delay. They used over a year of data on about 700,000 

appointments for a network of outpatient clinics in Minnesota where follow-up appointments 

were performed about 20% of the time. They observed that pre-booked, follow-up 



appointments were booked with the original doctor more often than non-pre-booked ones, and 

the latter were unused more often. They approximated the queuing system by assuming 

follow-up appointments see the time average of the system. They showed that while in the 

absence of balking, there is no benefit in pre-booking follow-ups, there is a unique level of pre-

booking that maximizes the throughput (when follow-up appointments are required less than 

25% of the time). They provided guidelines on how to find the optimal rate of pre-booked 

prioritized appointments. 

5.4 Diagnostics 

Several studies use data to support the careful study and modeling of operations problems in 

services. We focus below on studies related to diagnostics that specify if and when prescribed 

interventions are needed; such questions are relevant in many services. 

(Deo and Milind 2015) considered how to use rapid but costly diagnostic devices for improving 

early infant diagnostics for HIV in Mozambique. They investigated where to locate such devices 

to reduce diagnostic delay. Long delays that are common under the central diagnostic system 

reduce the percentage of caretakers who collect the results of the diagnostic test and thus the 

effectiveness of treatment. An important delay in this setting is the batching delay at the lab. 

The lab only completes diagnostics of full batches of tests, so a test arriving after a batch is 

processed could wait a long time for the collection of another batch before its diagnostics is 

completed. The authors combined a detailed simulation study with an approximated and 

carefully calibrated parents’ behavioral model as a part of the device location optimization 

problem. They showed the optimal usage of such devices can improve the diagnostics process 

much more than other changes to the existing system. The impact of delays and network design 

on this problem was also investigated in (Jonasson, Deo, and Gallien 2017). They developed a 

data-driven simulation that estimated the health benefit of different network designs (lab 

locations, assignments of clinics to labs, and lab capacities) by considering the detailed 

operational procedures. In particular they considered the time to diagnostic (from sample 

collection, transportation, in lab queueing), how the distribution of time to diagnostics impact 

treatment initiation (e.g., the probability of caretakers getting the lab results), and ultimately 

the health outcome (based on the size and age of population treated). In addition, they 



developed an optimization model to suggest beneficial network configurations. This tractable 

model approximated the impact on the distribution of delays from different designs. They then 

used this simulation model to estimate the results of recommended network designs. They 

established that a resource pooling where a single national lab is beneficial in Mozambique, but 

in countries with longer commute times, designs with more labs may be optimal. 

6. Example: From Descriptive to Prescriptive Analytics with Queue 

Mining 

As seen in the sections above, most analytics project are hard to define as most consider only 

one analytics – either prescriptive, predictive, comparative, or descriptive analytics. While 

different projects may focus on one, most successful projects progress through several of these 

phases.  To demonstrate the progression of research on business analytics from descriptive, via 

predictive and comparative, to prescriptive analytics, we now discuss recent advances in queue 

mining. We believe this methodology may be helpful in many service systems, and it also nicely 

demonstrates some of the future directions of research on business analytics in services. 

Many operational and logistics processes can be represented using a control-flow perspective. 

This perspective emphasizes the order of activities, decisions made along the way, and 

concurrent execution blocks. Control flow is typically modelled via dynamic models, such as 

Business Process Modelling and Notation (BPMN) or Petri nets (aka Place/Transition nets). 

Service processes with scarce resources and uncertainty are typically modeled via queueing 

theory. Queueing theory enables resource-centered analysis that is often relevant to the study 

and practice of service processes. We believe a synergy between approaches can be achieved, 

making their joint usage a very appropriate modelling framework for services. In a concise 

fashion, we define: 

• Queue Mining: business analytics for capacitated systems that combines transaction 

level data analysis and queueing theory. 

In the last two decades, the availability of detailed transaction-level data has increased. Process 

mining is a rapidly growing research field that aims at eliciting control-flow models from such 

transactional data (van der Aalst, 2011). On the queueing side, these data have often been used 



to calibrate theoretical queueing models (analytical, numerical, or simulation based). However, 

the models were first manually constructed and only later annotated with data (e.g., fitting 

arrival processes, estimating durations, and mining service policies). 

A recent development that uses transactional data to automatically extract queueing models is 

queue mining (Senderovich et al. 2014, 2015) and (Senderovich et al. 2016). Queue mining is an 

extension of process mining to consider queueing aspects that are prominent in services. The 

premise of queue mining is the use of data to retrieve the realized service process.   

Retrieving the realized service process based on available records still requires detailed data 

analysis. While much more data are available today in many service systems, they are often 

incomplete, and there is a main differentiation between modern manufacturing and service 

firms.  Incomplete and inaccurate data are especially prevalent when data entry is done 

manually or by different organizational units. For example, the details related to the process of 

seeing specialist doctors (e.g., pediatricians, surgeons, etc.) in EDs are often not well 

documented, as these doctors are not a formal part of the ED team. There is a similar concern 

about the processes related to patients arriving by ambulance or to medical tests occurring 

outside the primary medical unit with which the patient is affiliated. As a result, many specific 

time stamps essential to formulate an appropriate queueing model are often missing.  

Missing or incomplete data are common in most business analytics projects. Modern 

approaches allow missing data to be addressed by trying to impute them or by studying their 

impact indirectly. Within queue mining, missing data can be imputed by repairing event logs 

and making educated guesses for missing time stamps. (Rogge-Solti et al. 2013) applied an 

approach for imputing missing data to the ambulatory surgery process in a Dutch hospital. The 

operating theatre staff enters information manually, and there are missing data for almost 43% 

of patients. The authors modeled the service process as a stochastic Petri net and iteratively 

imputed missing data, combining available data with knowledge on the process. To reduce the 

computational complexity, they repaired the structure (e.g., a missing step) based on the 

alignments approach and the time stamps using inference in a Bayesian network. Both repairs 

can be done deterministically or using simulation. They further discussed how to measure the 

quality of the repair.   



An alternative approach for making educated guesses about missing time stamps was 

presented in (Senderovich et al. 2016). They used event data to measure queues to identify 

bottlenecks and process inefficiencies. In many service systems, time stamps for finishing a 

service are more accurate than those entering the queue or the service (start times are often 

missing from data, as providers are only obliged to report ending of activities). Therefore, the 

authors focused on analysing these situations. Their main idea was to cluster customers, using 

K-means clustering, based on the inter-completion times of their services. They assumed the 

“shortest” cluster (with the smallest representative) contained customers who did not wait; 

thus, their time in the system provided an estimate of the service time. Other clusters 

contained customers who observed, say, a low, medium, or long queue, and the queues they 

observed provided estimates to queues observed by customers with similar flow times. The 

authors devised algorithms to impute missing data based on existing data and evaluated them 

based on empirical data from call centers and a hospital where several services could be 

performed in parallel. 

There is much more to do in this line of research on descriptive analytics, such as considering 

incomplete data and learning operational procedures, such as prioritization, from data. The 

most recent advances in queue mining extend it to predictive, comparative, and prescriptive 

analytics. We describe these in the corresponding sections. 

Queue mining supports the formulation of relevant models, helps compare the realized versus 

planned processes, and supports predictions and analysis of performance metrics. A 

comparison of the planned process and reported performance measures allows a detailed 

verification and validation of the resulting process model (Senderovich et al. 2016). With these 

steps, a well-designed queue mining can also build intuition on potential process improvement, 

i.e., support comparative and prescriptive analytics. 

A first step in the direction of using process mining to extract simulation models was made by 

(Rozinat et al. 2008). Their work aimed to support prescriptive analytics for short-term 

interventions. (Mesabbah, Abo-Hamad, and McKeever, 2019) discussed the creation of an auto 

simulation model builder in the context of healthcare. They used ML to predict processing 

times and routing. They assumed data on waiting versus service and resources exist, which is 



often not the case, and thus incorporated specific resources in their simulation model. They did 

not report the use of real hospital data, however. In contrast, (Camargoa, Dumasa, and 

González-Rojasb, 2020) reported such usage with a data set containing event data for both 

customers and medical personnel. They also provided their source code. 

The continuation of queue mining work and transforming it from descriptive to prescriptive 

would require further theoretical support, such as the analysis of appropriate simulation 

models to include practical considerations for the scheduling and control of queues. Such 

considerations are known to improve performance of queueing processes and include priority, 

resource pooling, and scheduling. The latter considerations are especially important in services 

that require visits to several stations. We believe further use of queue mining to automatically 

create simulation models using existing data would facilitate prescriptive analytics in services. 

7. On Operations Research and Management Science in Business 

Analytics 

In the preceding pages, we have presented a framework for business analytics and 

demonstrated its efficacy using recent research on healthcare analytics. We now make several 

observations on the current and potential impact of ORMS professionals on business analytics 

based on our survey of the literature. 

7.1 The Current State of ORMS and Analytics 

On the one hand, there is an increasing amount of work on business analytics in general and on 

healthcare in particular within the ORMS community. Several very interesting data sets have 

been used to demonstrate the potential benefits of analytics in healthcare, e.g., 

http://seeserver.iem.technion.ac.il/see-terminal/. Many papers have used econometric 

tools that were less commonly used by operations researchers in the past, e.g., (Song, 

Tucker, and Murrell, 2015). In parallel, more traditional tools, such as simulation, queueing, and 

optimization techniques, have been used to support service analytics. On the other hand,  there 

is relatively little implementation of this healthcare analytics work. Much of the surveyed work 

focuses on descriptive or predictive analytics, with no long-term follow up of comparative 

http://seeserver.iem.technion.ac.il/see-terminal/


analytics in support of prescriptive analytics in application. The comparative analytics examples 

suggest that recommending interventions based upon data is challenging, despite the increased 

availability. We need more methods to study the impact of interventions. Even the relatively 

limited work that aims at prescriptive analytics is often published before a long-term impact 

can be adequately measured and reported; the recommendations are not implemented in 

practice, possibly because the research does not rely on descriptive, predictive, and 

comparative phases. 

We conclude that implementing business analytics in healthcare services is challenging. This 

conclusion is supported by others. For example, Scheinker and Brandeau (2020) shed light on 

the challenges involved in successfully implementing analytics projects in hospitals. Despite 

the expertise of ORMS professionals in prescriptive analytics in challenging settings, there is 

less impact than desired of prescriptive analytics on practice. We see implementation of 

prescriptive analytics projects in general and in healthcare in particular as an exciting and 

challenging opportunity to extend their impact. 

7.2 On the Future of ORMS in Business Analytics 

We believe ORMS tools will improve business analytics theory and practice in services such as 

healthcare. The thinking ORMS professionals bring to the business analytics table includes a 

focus on decision making and the use of several methodologies. These methodologies include 

modeling, optimization, stochastic analysis, and—arguably most importantly—the integration 

of a broad set of methodologies, including ones that traditionally belong to other disciplines 

(e.g., computer science, econometrics, and statistics). The inclusion of ORMS promises two 

main benefits. First, the focus of ORMS models on decision making is often very specific, i.e., 

problem driven. Second, the broad training of ORMS professionals allows us to understand 

business processes and relate them to performance measures in view of observed, but often 

incomplete data. Fundamental empirical models and their analysis start with data; we make 

inferences and conclusions based on these data. Such an analysis is not guided by a model of 

the system or by the process that generated the data. In contrast, ORMS also considers a 

model-based approach that is focused on each application. Note that while data often 

represent a single realization, useful models capture domain knowledge that applies to 



different realizations. Thus, without models, the inductive step from descriptive to prescriptive 

analytics requires a blind belief that observations from a specific realization are meaningful to 

other realizations (possibly from dissimilar settings). Adequate models support comparative 

analytics of different realizations by changing input parameters for these models. Such models 

assist in managing and resolving uncertainties. They also give decision makers confidence that 

they have adequately considered all factors and inherent uncertainties and are thus making 

robust and effective decisions. 

One of the fundamental ORMS approaches, see e.g., (Powell, and Batt 2008), is to formulate a 

problem-specific model, simplify it, and capture the essence of a complicated problem using 

appropriate tools (e.g., mathematical analysis that leads to asymptotic analysis, heuristics, and 

bounds). This approach aims at generating insights that allow us to verify and validate results 

and assumptions made in the data analysis and also to support managers in critically thinking 

about the problems they face.  

Several of the significant steps in analytics that supports managers in critically thinking about a 

problem are related to the interpretability of results. Without interpretability, the inductive 

steps—from descriptive to predictive, comparative, and prescriptive analytics —are large and 

harder to take (or to convince others to take). Seeking interpretable and insightful results is 

second nature to ORMS professionals. The focus of ORMS on generating insights and 

interpretability is therefore a requisite aspect of business analytics. Without these insights, 

business managers cannot make responsible decisions. 

Because ML (such as deep learning) models may have low interpretability, their use in business 

analytics may not be advised. With time, people and managers could learn to trust machines 

and computers to support more decisions. For example, the car industry, over the last 80 years, 

has moved from manual gears to automatic gears, to having cruise control as a standard 

feature, to automatic breaking, and is now moving towards autonomous vehicles. Similarly, 

managers have moved from calculating numbers using paper, to slide rules (slipstick), to 

calculators, and to advanced computer software. Nevertheless, managers who make decisions 

on “autopilot” solely “because the algorithm recommended it” are not desirable, bankable 

managers.  Therefore, we believe research in the ORMS community that focuses on business 



analytics could improve the interpretability of ML models and facilitate decisions in conjunction 

with their development. While interpretability is also studied by computer scientists, the 

model-based ORMS approach that relates this to specific decisions in application could support 

new frontiers. The genuine interest the ORMS community already has in business analytics may 

motivate us to push the theory of business analytics into the context of “ease of interpretability 

for the regular, savvy business manager” within ML models. Some preliminary work on 

improved interpretability has been done in (Bertsimas, King, 2017).  

Two ORMS methodologies that would be useful to successful business analytics are 

optimization and stochastic analysis. For example, queue mining takes advantage of advances 

in information technology (process mining), and this has synergy with operations research in 

the study of service analytics where queueing models are appropriate. As another example, 

proper simulation models often require understanding of the stochasticity involved in the 

simulated process. Simply optimizing the performance of a predictive model is often 

inappropriate. Such models focus on finding correlations and may ignore causality and the 

impact of decision making, i.e., of interventions, on data and thus on the generated predictions. 

Moreover, these models are typically not designed to serve as input to optimization as a part of 

prescriptive analytics. The recent work of (Elmachtoub and Grigas, 2020) suggests how to 

jointly perform prediction and optimization in an effective fashion. This approach supports the 

use of ML in business analytics. Nevertheless, in many cases, performing comparative analytics 

is essential to support prescriptive analytics. 

Another central paradigm of ORMS is model selection. It would be interesting to find effective 

ways to preform model selection in view of data, possibly by weighing different models. Recent 

advances in such model selection has been achieved outside the ORMS community. For 

example, the super learner approach described in (van der Laan et al. 2007) used cross 

validation to find an optimal weighted combination of several prediction algorithms (based on 

machine learning) to recommend individual treatment rules. With an appropriate definition of 

“optimal”, a similar approach can and should be used for model selection in the ORMS 

community. 



Finally, we believe the view of ORMS professionals supports proper implementation of 

descriptive, predictive, and comparative analytics. This approach would help managers with the 

inductive step required to implement decisions recommended by prescriptive analytics.  We, 

therefore, urge our community to perform analytics in all its phases in support of the practice 

of data-driven decision making. 

7.3 Publishing Research on Business Analytics 

While the roots of ORMS research are data driven, publishing data-driven academic work in 

ORMS has been traditionally very tough. There are many objective reasons: lack of high quality 

data, confidentiality of problem-specific data that companies are not willing to share, the 

difficulty of working with public operational data (lack of availability and confidentiality), the 

inability to verify reproducibility of results, and more. Nevertheless, in recent years, with the 

advances in business analytics and the higher awareness of the ORMS community’s 

contributions to this field, more companies are willing to share their data for research. In 

addition, there are several accessible data banks, e.g., https://www.kaggle.com/, and several 

sub communities of ORMS have data-driven research competitions. As a community, we should 

publish more such data sets and work with them. At the same time, journals are providing 

clearer guidelines on publishing research with data; this type of effort supports the progress of 

the ORMS academic community in business analytics and can support managers in critically 

thinking about a problem.  

Some excellent ORMS analytics papers combine mathematical and modeling tools with 

empirical ones (and other excellent papers focus on one of these tools). For example, empirical 

analysis would support and validate assumptions in modeling (e.g., a goodness of fit for a 

Poisson arrival process). This sort of analytics paper would demonstrate the applicability of 

results and support the inductive step from descriptive analytics, i.e., past data and knowledge, 

to prescriptive analytics, i.e., future decisions. Writing such papers suggests the need to 

broaden the training of ORMS in academia and beyond and makes joint authorship more 

attractive. Some ORMS experts possess deep knowledge of econometrics; others know more 

about algorithms, and still others are experts in optimization and so on. We should 

acknowledge that it is impossible for one person to be an expert in everything.  

https://www.kaggle.com/


Having different expertise reflects on the papers we write and the review process. The latter 

becomes harder: how can I review papers that use tools I am not an expert in? With this in 

mind, adding structure to the review process is helpful. It is important for us as a community to 

maintain an open mind to different research approaches. Rather than rejecting papers because 

they depict a different approach than our favorite one (e.g., using a distinctive set of tools), we 

need to judge papers based upon their contributions. In many cases, papers that follow 

different approaches may improve each other. Thus, rather than discounting or disqualifying 

contributions of a paper because we have a different approach, we should think about 

extending these contributions using our approach. Such a process would be much more 

constructive and generate synergy across approaches. Given the famous (Box 1976) quotation 

“all models are wrong, but some of them are useful,” the judgement on accepting a paper 

should not be that it is “the correct” model, but that it is a useful one.  Or as Chris Tang said, in 

personal communication (before reading this paper), “there are no perfect papers.” After all, 

one of the foundations of the ORMS approach is inclusivity of different tools to support 

improved decisions. So let us remain inclusive in our refereeing efforts as well. 
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