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Time-Varying Asset Volatility and the Credit
Spread Puzzle

DU DU, REDOUANE ELKAMHI, and JAN ERICSSON∗

ABSTRACT

Most extant structural credit risk models underestimate credit spreads—a shortcom-
ing known as the credit spread puzzle. We consider a model with priced stochastic
asset risk that is able to fit medium- to long-term spreads. The model, augmented by
jumps to help explain short-term spreads, is estimated on firm-level data and identi-
fies significant asset variance risk premia. An important feature of the model is the
significant time variation in risk premia induced by the uncertainty about asset risk.
Various extensions are considered, among them optimal leverage and endogenous de-
fault.

STRUCTURAL CREDIT RISK MODELS HAVE MET WITH SIGNIFICANT difficulties in aca-
demic research. First, attempts to empirically implement models on individual
corporate bond prices have failed.1 Second, efforts to calibrate models to ob-
servable moments including historical default rates and Sharpe ratios have
been unable to match average credit spreads levels (the credit spread puzzle;
Huang and Huang (2012)). Finally, models have been unable to jointly explain
dynamics of credit spreads and equity volatilities (Huang and Zhou (2008)).

An important recent insight is that model improvements are likely to
come from modeling risk premia rather than default probabilities (Chen,
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Collin-Dufresne, and Goldstein (2009, CCG)). Building on this insight, we de-
velop a structural model with time-varying priced asset volatility to explain
levels and dynamics of both credit spreads and equity volatilities. Our first
contribution is to show that, in calibrations, a reasonable unlevered asset
variance risk premium (AVRP) allows our model to match spread levels for
medium and longer maturities without difficulty. Our second contribution is
to estimate a stochastic volatility jump-diffusion (SVJ) model on firm-level
data for default swap spreads and equity volatility. We identify an economi-
cally significant AVRP and find that modeling priced stochastic asset volatility
strongly improves the model’s ability to not only account for time variation in
equity volatility, but also explain the time series of default swap spread term
structures.

Recent empirical work on default swap spreads provides evidence suggestive
of an important role for stochastic and priced asset volatility in credit risk
modeling.2 Although a compelling extension to a class of models that has been
around for almost 40 years, stochastic volatility (SV) has not garnered much
attention in the credit risk literature. We present semi–closed-form (up to a
Fourier Inversion) solutions to debt and equity prices in a stochastic asset
volatility framework where default is triggered by a default boundary, as in
Black and Cox (1976), Longstaff and Schwartz (1995), and Collin-Dufresne and
Goldstein (2001).3 In a model with SV, different aspects of variance dynamics
influence credit spreads. However, by far, the strongest effect arises from the
market price of asset volatility risk.

To illustrate this point, we replicate the Huang and Huang (2012) and Chen
Collin-Dufresne and Goldstein (2009) calibrations. We confirm that, in the
absence of stochastic asset risk, our model replicates the credit spread puzzle.
Without a risk premium on asset variance, the model faces the same problem
that past studies have struggled with—it is hard to generate sufficiently high
spreads. The presence of stochastic variance per se does not help sufficiently in

2 Huang and Zhou (2008) test a broad set of structural models and show the models’ inability
to fit the dynamics of credit default swap prices and equity volatilities. In particular, they find
that the models have difficulty generating sufficient time variation in equity volatility, suggesting
that an extension allowing for stochastic asset volatility is desirable. Zhang, Zhou, and Zhu (2009)
perform an empirical study of the effect of volatility and jumps on default swap prices. Their results
also point to the importance of modeling time-varying volatility. Further evidence is provided in
Wang, Zhou, and Zhou (2013), who show that not only are equity variance levels important for the
price of default protection, but the associated risk premium is also a key determinant of firm-level
credit spreads. Given this evidence, financial leverage would have to be the sole source of variation
in stock return volatility for asset volatility to be constant, as it is assumed to be in the majority
of structural credit risk models. Instead, recent empirical work by Choi and Richardsson (2016)
documents time variability in unlevered asset risk.

3 Heston (1993) provides a closed-form solution for the price of a European option with Cox,
Ingersoll, and Ross’s (1985) dynamics for the variance. Fouque et al. (2003, 2004, 2011) introduce
perturbation techniques to address SV in a variety of option pricing settings. Related to our work,
Fouque et al. (2006) use a slow variation asymptotic approximation to a free boundary problem
with Gaussian variance dynamics to study defaultable securities. In the Internet Appendix, we
discuss these and other methodologies. The Internet Appendix may be found in the online version
of this article.
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Time-Varying Asset Volatility and the Credit Spread Puzzle 1843

doing so. However, for reasonable parameter values governing the AVRP, our
model has no difficulty matching medium- to long-term spread levels. Because
short-term spreads remain hard to explain, consistent with previous work, we
introduce a jump component to our asset value dynamics using a specification
similar to Pan (2002) that allows for a risk premium on jump-size uncertainty.4

To better understand this extension to our model, we conduct a calibration
exercise for a representative firm as we do for the SV case. We fix Sharpe ratios
and total volatility in our calibration. Note that introducing priced jumps affects
the amount of variance risk the model will bear—this would not matter if jump
and volatility risk were substitutes, but they influence different parts of the
term structure. We find a combination that does well in explaining spreads
across the term structure while allowing the model to fit both long- and short-
term default probabilities.

In addition to conducting calibration exercises for representative firms, we
run firm-by-firm estimations. In particular, we estimate firm-specific variance
risk premia using time series of default swap term structures and option-
implied volatilities for a cross section of firms with a variety of industry and
credit rating characteristics. The estimations require identification of the dy-
namics of asset values, volatilities, and jumps, all of which are unobservable.
We estimate physical and risk-adjusted firm value, volatility, and jump dynam-
ics using a simulated maximum likelihood (ML) methodology.

To the best of our knowledge, we provide the first estimates of firm-level asset
variance and jump dynamics together with their risk premia in the literature.
We obtain a broad range of estimates for the AVRP that are negative and sta-
tistically significant for a large majority of firms. The implied mean equity vari-
ance risk premium (EVRP) is −16.7%, with 5% and 95% percentiles of −44%
and −1.5%, respectively. The average jump intensity estimate across firms is
1%, with a cross-sectional variation of 0.1% to 4.6%, which is plausible given
the variation in credit ratings in our sample. The risk-adjusted jump size is
significant for the majority of firms, with an average of −81% of asset value.5

It is important to note that, in addition to explaining credit spread levels, our
model fits the level of equity volatility. Likelihood ratio tests show that our SV
model strongly dominates the nested constant volatility case.

To benchmark the level of our estimates, we translate them into an EVRP
that we compare with extant literature. The closest paper to our specification
is Pan (2002), who produces equity index-level estimates. Given the diversifi-
cation provided by an index, estimates for the index variance risk premium

4 Since the advent of reduced-form credit models (see, e.g., Duffie and Singleton (1999)) that
are based on jumps-to-default, it has been noted that diffusion-based models generate insufficient
short-term spreads. Duffie and Lando (2001) find that jumps-to-default arise endogenously in a
structural model when asset values cannot be observed precisely and that this helps generate
significant short-term spreads. Collin-Dufresne, Goldstein, and Yang (2012) introduce jumps into
a structural model for credit index spreads for precisely this reason.

5 In the Internet Appendix, we report on the estimation of the nested SV case and find that
the inclusion of jumps does not significantly change the estimates of the parameters of the volatil-
ity dynamics.
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provide a conservative benchmark for what constitutes a “high” firm-level
EVRP, all else equal. If idiosyncratic volatility risk is not priced, then for a
given level of volatility and leverage, the EVRP for an individual firm with
some idiosyncratic risk will be lower than that of the market. With this in
mind, a comparison with the estimates in Pan (2002) suggests that our esti-
mates are economically reasonable.6

Since we identify both physical and risk-adjusted asset value and volatility
dynamics, we are able to compute physical default probabilities and Sharpe
ratios. These metrics also suggest that our AVRP estimates are reasonable.
Given the estimates of both physical and risk-adjusted dynamics for firm
value, we decompose credit spreads into a component due to average losses,
a risk premium for asset variance, and a risk premium for jump risk. The
contribution of the variance risk premium to five-year credit default swap
(CDS) spreads is on average 35%. Shutting down the variance risk premium
significantly reduces median spreads. We also find that, in relative terms,
the contribution of variance risk to spreads is larger for more highly rated
firms.

The time-series fit of our model is good overall. The median bias in spreads
across maturities is highest for the one-year tenor at five basis points. Most of
the improvement over a traditional constant volatility model such as Black and
Cox (1976) comes from the variance risk premium, while jumps help at the short
end of the spread curve. Root mean squared errors are improved for all maturity
segments in our SVJ specification, but remain high for the shortest maturities.
Illiquidity may be a reason for the difficulty that SVJ models face in explaining
short-term credit spreads.7 To address this possibility, we reestimate the SVJ
model with an adjustment for bid-ask spreads. Relative bid-ask spreads for one-
year spreads are almost three times higher than those for three-year spreads.
Following Pan and Singleton (2008), we allow spread observation errors to
be proportional to firm-level time series of relative bid-ask spreads for each
maturity. This extension yields an improvement in model fit, although not for
shorter maturities.

Our baseline model takes the default boundary to be an exogenous function
of leverage. We provide an extension of our SV specification to allow for en-
dogenous default and benchmark it to the constant volatility case discussed in
Leland (1994). We find that the sensitivity of the default boundary to the level
of volatility depends on the parameters governing the speed of mean reversion
and volatility of asset variance. Most importantly, a variance risk premium
increases the value of the upside to shareholders and thus lowers the default
boundary. Our variance risk premium is specified as proportional to the level

6 Another metric to benchmark our estimates of the EVRP for the SV case is the ratio of option-
implied to realized volatilities, which is an empirical measure of the variance risk premium. Han
and Zhou (2011) report one-month implied and realized volatilities for a panel of 5,000 individual
stocks. The ratio of their reported averages is 1.17. For our benchmark firm, the ratio of one month
expected risk adjusted to physical volatility is 1.04.

7 See, for example, Bongaerts, de Jong, and Driessen (2011) for evidence that CDS spreads may
include a liquidity risk premium earned by the seller of protection.
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Time-Varying Asset Volatility and the Credit Spread Puzzle 1845

of asset variance. Hence, our default boundary will be lower when risk premia
are high. A procyclical default boundary is consistent with Chen (2010) and
Bhamra, Kuehn, and Strebulaev (2010). However, the effect of variance risk on
default probabilities dominates the effect of the procyclical boundary, and thus,
default rates remain countercyclical, as in those papers. In addition, given that
variance risk influences the decision to default, it is natural to ask how it affects
firms’ ex ante leverage decisions. The effect on the capital structure decision
is to reduce the optimal leverage. In our stylized example, the reduction is by
an economically significant amount. This finding suggests that variance risk
premia should be an empirical determinant of the cross section of corporate
leverage ratios.

Finally, our work relates to the recent literature on the ability of equilibrium
asset pricing models to explain the credit spread puzzle. Motivated by the
possibility that the equity premium and credit spread puzzles are related, CCG
bring the habit preferences proposed by Campbell and Cochrane (1999) to bear
on credit spreads.8 The strong time variation in the risk premium inherent to
this model helps explain credit spread levels. A parallel can be drawn to our
setting, where it is the time variation in systematic asset variances, and thus
asset Sharpe ratios, that allows the model to explain spreads.9

In Merton (1974), bondholders provide asset risk insurance to shareholders
by selling a put. In our model, shareholders benefit further from (systematic)
volatility insurance written by bondholders. This is reflected in lower expected
instantaneous returns and Sharpe ratios for equity of highly levered firms. This
observation is consistent with recent evidence of low equity returns for firms
near distress (Campbell, Hilscher, and Szilagi (2008)).10 On the other hand,
since bondholders are the insurance writers, they require higher risk premia
to compensate. Accordingly, in our model, debt Sharpe ratios are higher than

8 Consistent with this insight, Chen (2010) and Bhamra, Kuehn, and Strebulaev (2010) show
that the long-run risk framework of Bansal and Yaron (2004) with regime-switching expected
growth rates and volatility combined with a dynamic trade-off model can generate sufficient co-
movement in risk premia, default rates, and default losses to explain the high credit spreads and
low leverage ratios of investment-grade firms.

9 CCG further find that a combination of habit preferences with countercyclical asset value
default boundaries can resolve the credit spread puzzle. Our model is able to generate sufficient
spread levels with either a fixed or endogenously procyclical boundary, a feature shared by the
models of Chen (2010) and Bhamra, Kuehn, and Strebulaev (2010).

10 McQuade (2018), who, like us, calibrates a structural model of the firm with priced stochastic
asset volatility to study credit spreads, also finds that his model can predict lower equity returns
near distress. His model has predictions relevant for the momentum anomaly and the value
premium. He finds that allowing for endogenous default helps his model fit credit spreads in
the cross section of credit ratings. He does not, however, carry out firm-by-firm estimation of his
model, nor does he consider optimal capital structure. Garlappi, Shu, and Yan (2008) show that in a
one-factor model in which shareholders and bondholders bargain about the proceeds in distress, the
equity beta decreases near distress, providing a possible solution to the puzzle. With variance risk,
the regular equity beta can be monotonically increasing in leverage but is offset by an increased
loading on the negatively priced variance risk.
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their equity counterparts.11 This points to a possible link between the distress
puzzle and the credit spread puzzle.

This paper is organized as follows. Section I describes the SV model and
explains how we derive it in closed form. Section II covers calibration of the
model. Section IV describes our SVJ model, discusses comparative statics, and
presents calibration results. Section V reports the estimation results for the
SVJ model. We provide further extensions to our model in Section VI and
conclude in Section VII.

I. Model

To study the role of variance risk in pricing default risk, we extend the Leland
(1994) model to incorporate SV. This involves variance dynamics like those in
Heston (1993), interpreted as asset rather than stock return variance. Asset
value, X, and variance, V , dynamics are described as follows under the physical
probability measure P:

dXt

Xt
=

(
μP

X − q
)
dt +

√
Vt

(
ρdW2,t +

√
1 − ρ2dW1,t

)
,

dVt = κ(θ − Vt)dt + σ
√

VtdW2,t,

where μP
X is the expected return on the firm’s assets, q is the proportional

payout rate, ρ is the instantaneous correlation between the Brownian motion
W = ρW2 +

√
1 − ρ2W1 that drives asset value uncertainty and W2 that drives

uncertainty with respect to asset variance, κ is the speed of mean reversion, θ is
the long-run mean variance, and σ is the volatility parameter for asset variance.
This specification for unlevered asset dynamics involves both diffusive risk
and uncertainty about future asset variance. To reflect this, we specify the
mean of the unlevered asset return μP

X as a function of the risk premia for
the two sources of risk. More specifically, we let the expected unlevered asset
price appreciate with the risk-free rate r and two risk premium components:
μP

X = r + (
√

1 − ρ2λD + ρλV )Vt. This expected return compensates for diffusive
risk via λD and variance risk via λV . The risk-adjusted dynamics for X and V
are

dXt

Xt
= (r − q)dt +

√
Vt

(
ρdW Q

2,t +
√

1 − ρ2dW Q
1,t

)
,

dVt = κ∗(θ∗ − Vt
)
dt + σ

√
VtdW Q

2,t,

11 In a model in which uncertainty is normally distributed, the Sharpe ratio is the same for
debt and equity, regardless of leverage. In our model, this is not the case and Sharpe ratios differ
depending on the mix of loadings on the asset level and variance risks.
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Time-Varying Asset Volatility and the Credit Spread Puzzle 1847

where κ∗ = (κ + σλV ) and θ∗ = κ
κ∗ θ . Finally, a quantity that we discuss often

below is the asset return Sharpe ratio, which is given by

SRt = μP
X − r√

Vt
=

(√
1 − ρ2λD + ρλV

)√
Vt. (1)

In what follows, we describe the solution for the firm’s equity value and equity
volatility. As in Leland (1994), we assume that the firm issues consol bonds. The
equity value can be written as the difference between the levered firm value (F)
and the debt value (D), that is, E(X) = F(X) − D(X). The levered firm’s value is
given by

F(Xt) = Xt + ζc
r

(1 − pD(Xt,Vt)) − αXD pD(Xt,Vt), (2)

where X, ζ , c, α, XD, and pD, respectively, denote the initial unlevered asset
value, the tax rate, the coupon rate, the liquidation cost, the default boundary,
and the present value of $1 at default. At this stage, we take the default bound-
ary as an exogenously given constant. In Section VI, we provide an extension
in which the firm’s default policy is endogenous. In equation (2), the first term
is the unlevered asset value, the second term is the tax benefit, and the third
term is the bankruptcy cost. The debt value is the sum of the present value
of the coupon payments before default and the recovered value of the firm at
default, and is given by

D(Xt) = c
r

+
[
(1 − α)XD − c

r

]
pD (Xt,Vt) .

The equity value is therefore given by

E(Xt) = Xt − (1 − ζ )c
r

+
[
(1 − ζ )

c
r

− XD

]
pD(Xt,Vt). (3)

Applying Itô’s lemma, we obtain the stochastic process for the equity value as
follows:

dEt

Et
= μE,tdt + Xt

Et

∂Et

∂Xt

√
Vt

(
ρdW2,t +

√
1 − ρ2dW1,t

)
+ σ

1
Et

∂Et

∂Vt

√
VtdW2,t,

whereμE,t is the instantaneous equity return. The instantaneous equity volatil-
ity, σE,t, can be written as

σE,t =
√√√√[(

Xt

Et

∂Et

∂Xt

)2

+
(
σ

Et

∂Et

∂Vt

)2

+ 2ρσ
Xt

E2
t

∂Et

∂Xt

∂Et

∂Vt

]
Vt. (4)

Under the risk-adjusted measure Q, pD = EQ
t [e−r(τD−t)], where τD = inf{s �

t | Xs = XD} denotes the default time. To solve for pD, we need to compute the
probability density function of the stopping time τD under the risk-adjusted
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probability measure Q. To do so, we rely on Fortet’s lemma, as discussed in the
Internet Appendix.12

II. Calibrating the SV Model

Prior to carrying out a full estimation of the model, we consider calibrated
examples to illustrate its key implications. The credit spread puzzle is typically
seen as an inability to generate a sufficiently large risk premium component
for bond spreads, in a model calibrated to default losses, leverage, and some
measure of the equity risk premium.13 CCG show that a defaultable bond price
can be expressed as a function of the physical default probability, the expected
loss, and the Sharpe ratio. This suggests that in a calibration where the first
two are fixed, the Sharpe ratio will determine the attainable spread levels. In
fact, they show that if most asset risk is systematic, it is not hard to fit historical
spreads. As a result, they advocate calibrating models to Sharpe ratios as well
to account for the presence of both idiosyncratic and systematic volatility.

Like CCG, we consider an initial state of the world based on historical asset
volatility, Sharpe ratio, and default probability for a representative Baa firm.14

We assume an annualized asset volatility of 29%, a physical default probability
of 4.9% at the 10-year horizon, and a historical Sharpe ratio of 22%.15 The asset
value drift is determined by the asset variance and the Sharpe ratio defined
in equation (1). As we will show, this constraint, together with the matching
of historical default rates, significantly limits the range of economically viable
values for the amounts of diffusive and variance risk premia.

We set the correlation between asset value and variance shocks to −0.15, the
volatility of asset variance (σ ) to 30%, the long-run mean variance (θ ) equal
to the base-case initial variance (0.292), and the speed of mean reversion (κ)
to 4. There are no empirical estimates to benchmark the firm-by-firm asset
volatility parameters. In the absence of any clear comparable, we justify the
levels for the speed of mean reversion (κ), the correlation between asset value
and variance shocks (ρ), and the volatility of variance (σ ) by the levels we ob-
tain when we estimate the model in Section V. The speed of mean reversion
is somewhat lower than the level found in Aı̈t-Sahalia and Kimmel (2007) for
equity index option data. Estimates for the correlation parameter available at
the equity index level suggest that ρ lies between −0.4 and −0.5 (see, e.g.,
Eraker, Johannes, and Polson (2003)). Asset value correlation may be lower

12 See Fortet (1943).
13 See Huang and Huang (2012).
14 Historical leverage ratios, payout rates, and recovery rates are also used as inputs.
15 Asset volatility of 29% is based on the median estimate in Feldhütter and Schaefer (2018)

for that rating category. We use the Sharpe ratio reported in CCG for the period 1974 to 1998.
While in Merton (1974), Sharpe ratios of equity and debt are identical; later we show that in our
setting they may differ. Equity Sharpe ratios are lower than asset Sharpe ratios. For the purposes
of this particular calibration the difference is not economically significant and by constraining the
somewhat higher asset Sharpe ratio, we are being conservative in terms of generating spreads.
The source for the default probabilities is Moody’s report for the period 1970 to 2010.
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Time-Varying Asset Volatility and the Credit Spread Puzzle 1849

for several reasons. First, part of the negative relation for equity returns may
be related to financial leverage. Second, there is evidence that the asymmetric
volatility effect is lower for idiosyncratic volatility shocks than for their system-
atic counterparts (see Dennis, Mayhew, and Stivers (2006)). Estimates in the
equity index option literature for the volatility of variance ranges from around
0.3 (e.g., Bates (2006) and Pan (2002)) to 0.5 (e.g., Aı̈t-Sahalia and Kimmel
(2007)).

To adjust for illiquidity, we follow CCG and consider the spread to Aaa as a
proxy for the default component of a firm’s bond yield. This way of accounting for
nondefault factors implicitly assumes that it is mostly the default component
of spreads that varies with the credit rating. In the Internet Appendix, we
provide an alternative adjustment for illiquidity based on bid-ask spreads. The
historical average for the 10-year Baa-Aaa spread is 131 basis points.

Table I reports on the calibration for our representative Baa firm. Consider
first line 4, where the initial asset volatility is set to a historical level of 29%.
To illustrate the influence of variance risk premia on spreads, two polar sce-
narios are considered: one with the risk premium determined entirely by the
variance risk premium (λD ≡ 0) and the other entirely by a diffusive asset risk
premium (λV ≡ 0). We also consider a combination of variance and diffusive
risk that matches the historical Baa-Aaa spread for an initial asset volatility
of 29%. Given the level of drift and asset volatility, we match 10-year default
probabilities by selecting the level of the default boundary.16

The credit spread puzzle has been presented in past studies as the inability
to generate, for example, Baa-Aaa spreads near their historical levels. For in-
stance, in Huang and Huang (2012), model-implied 10-year Baa spread levels
rarely exceed 60 basis points across their selection of models.17 At the bench-
mark asset volatility (line 4), we obtain a spread of 84 basis points without the
variance risk premium. With priced variance risk, our model-implied spread
reaches 183 basis points at the benchmark level of asset volatility. This is more
than twice the spread without variance risk, it is higher than the historical
10-year Baa-Aaa spread and, it is slightly lower than the 10-year Baa to Trea-
sury spread of 194 basis points reported in Huang and Huang (2012). Note,
however, that these results are based on using the maximum amount of vari-
ance risk premium consistent with the historical Sharpe ratio. More weight
given to the diffusive risk premium would reduce the predicted spread. We
carry out a similar exercise for four-year spreads and obtain similar results.

In summary, Table I allows us to make two important observations. First,
without a variance risk premium, we face the same problem that past stud-
ies have struggled with—it is hard to generate sufficiently high spreads. The

16 To match 10-year probabilities, the default boundary equals 43.5% of the total liabilities. This
value is in the range reported in Davydenko (2012), although lower than the median of 61% of debt
face value.

17 For their base-case formulation using the Longstaff and Schwartz (1995) model under a
constant risk free rate, they report 56 basis points. We will refer to this base-case model whenever
we cite their findings.
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Time-Varying Asset Volatility and the Credit Spread Puzzle 1851

presence of SV per se does not help in doing so.18 Second, in the presence of
maximal variance risk, predicted 10-year spreads are much higher, and in fact
overshoot required levels. More importantly, there exists a mix between dif-
fusive and variance risk (λD = 0.3 and λV = −3.08) that is able to match the
historical Baa-Aaa spread of 131 basis points.

Having calibrated the model to the 29% volatility case, we consider alterna-
tive scenarios for this metric. Intuitively, we ask what would happen if at some
point in the near future we faced a new volatility level ranging from 20% to
38%, while all other parameters and initial asset value were held constant. A
key feature of our model is that the asset value drift and hence Sharpe ratio
depends on the level of the variance. When variance is high, the compensation
per unit asset risk is high, and vice versa. This is evident from the second col-
umn in Table I: Across the range of asset volatilities between 20% and 38%, the
Sharpe ratio varies between 15% and 29%. This is reminiscent of the findings
in CCG, where the countercyclical compensation for risk helps generate higher
spreads.19

In our specification of the asset drift, the Sharpe ratio is state dependent
regardless of the composition of the asset risk premium μP

X − r. However, note
that the wedge between risk-adjusted and physical default probabilities widens
much more in high volatility states in the presence of a variance risk pre-
mium. For example, while the asset Sharpe ratio increases from 22% to 29%
for both risk premium specifications when asset volatility rises to 38%, the
ratio between Q and P 10-year default rates is about 5 with variance risk only,
compared to about 3 without. This translates into a spread increase of 192
basis points compared to 124. At λ∗

D, λ
∗
V , the ratio is about 4 and the spread

increases by 156 basis points.20 It therefore appears that while constrained to
generate reasonable Sharpe ratios and overall volatilities, our variance risk
specification also allows us to generate reasonable medium- to long-term credit
spread levels.

We now turn to a typical Aa firm in Table II. This exercise is justified by
the observation (e.g., Huang and Huang (2012)) that the credit spread puzzle
becomes more severe as credit quality increases. Table II reports on an Aa
firm with 21% asset volatility and 21% leverage.21 With diffusive risk only, we
find a spread of 18 basis points, whereas with variance risk only, we obtain 99
basis points. This compares to Huang and Huang (2012), who find a 14 basis
point 10-year spread implied in their base-case calibration using a constant-
interest-rate version of Longstaff and Schwartz (1995). They report a historical

18 As pointed out by CCG, once a model is calibrated to expected losses, spreads can only be
influenced by the covariance between the pricing kernel and future cash flows.

19 See Lustig and Verdelhan (2012) for empirical evidence of the countercyclicality of equity
Sharpe ratios. We provide a more detailed discussion of equity and asset return Sharpe ratios in
the Internet Appendix.

20 These ratios are comparable to what has been reported in Berndt et al. (2018), and Doshi
et al. (2013).

21 The asset volatility value is based on Feldhütter and Schaefer (2018) and the leverage value
from Huang and Huang (2012).
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Time-Varying Asset Volatility and the Credit Spread Puzzle 1853

spread to Treasury of 91 basis points and a spread to Aaa of 28 basis points.
For an Aa firm, it is also feasible to determine a combination λ∗

D, λ
∗
V to match

either historical spread metric. Interestingly, ratios of risk-adjusted to physical
10-year default probabilities are higher (for any combination of diffusive and
variance risk) for an Aa firm than a Baa firm.22

It has often been observed that, due to the predictability of default, structural
models are unable to generate nontrivial short-term spreads. In addition, we
are aware of little work that discusses the ability of structural models to ex-
plain short-term physical default probabilities. An exception is Leland (2006),
who documents a tendency to underestimate not only spreads but also default
rates at shorter horizons. Table I reports on spreads and default probabilities
at the one-year horizon and confirms the current model specification’s inabil-
ity to generate sufficient spreads and default rates one year out. This is an
interesting variation of the credit spread puzzle, which most often refers to
high empirical spreads with low empirical default rates. At the short end, the
challenge is to generate sufficiently high spreads and default rates, whereas at
longer horizons, the issue is to fit spreads without exaggerating default rates.
We return to this tension when introducing jumps into our framework below.

In summary, introducing a variance risk premium significantly increases
medium- to long-term spreads, for both Baa and Aa firms, while matching
historical default probabilities, Sharpe ratios, and volatilities. A key feature
of our model is that the Sharpe ratio is state dependent, as is the difference
between risk-adjusted and physical default probabilities. The Sharpe ratio is
high when volatility is high and increases spreads significantly more in high
volatility states than in the absence of a variance risk premium. The current
model specification does not improve, however, on past models’ performance at
shorter horizons.

One difficulty we face in the analysis above is that we do not have empiri-
cal estimates for the AVRP parameter λV . In the options literature, the EVRP
parameter has been estimated for stock indices. For example, Pan (2002) finds
a value equal to 7.6 using data on short-dated S&P 500 index options. Un-
fortunately, this value is not directly comparable to our parameter λV for two
reasons. First, our risk premium applies to individual firms as opposed to in-
dices and, second, it reflects the risk of unlevered assets rather than levered
equity. To conduct a more appropriate comparison, we derive the relationship
between asset and equity variance risk premia.

More specifically, we measure the variance risk premium using the change in
the drift of the variance dynamics when moving from the physical to the risk-
adjusted probability measure. For unlevered variance dynamics, this change
in drift is given by λVσ Vtdt. This translates into the following expression for
the EVRP:

EVRP(Xt,Vt) =
(
∂VE,t

∂Vt
σλV + Xt

∂VE,t

∂Xt

(
ρλV +

√
1 − ρ2λD

))
Vt. (5)

22 See Berndt et al. (2018).
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Figure 1. Levered and unlevered variance risk premia and volatilities. This figure illus-
trates the interplay between leverage, volatility of assets, and the equity variance risk premia
(EVRP), computed using equation (5). Panel A plots asset and equity variance risk premia versus
leverage. Panel B plots the two types of variance risk premia against the variance risk premium
parameter λV . Panel C plots the volatility of asset and equity variance dynamics against leverage.
Finally, Panel D plots variance risk premia against the volatility of asset variance. (Color figure
can be viewed at wileyonlinelibrary.com)

Note that the EVRP is a function of both the diffusive and the variance risk
parameters, λD and λV .23

The EVRP is a function of all the variables and parameters of the model.
Figure 1 summarizes selected comparative statics of equity versus asset vari-
ance premia across leverage, variance volatility, and the AVRP parameter λV .
The top left panel illustrates how a firm’s EVRP is amplified by leverage (with-
out leverage it coincides with the AVRP). With an AVRP of −7.5% per annum,
its levered counterpart is almost doubled at just less than −15% when leverage
reaches 40% and almost trebled once it reaches 60%. As we discuss below, this
will have a tendency to reduce equity returns, all else equal.

While, as expected, both risk premium metrics coincide at zero, as λV be-
comes more negative (upper right panel), both risk premium metrics become

23 In the Internet Appendix, we provide details on the derivation of the EVRP in the more
general SVJ specification.
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Time-Varying Asset Volatility and the Credit Spread Puzzle 1855

Table III
The Equity versus Asset Variance Risk Premium

The model is calibrated to match a Sharpe ratio of 22% and cumulative default probability of 4.9%
at the 10-year horizon, and at the initial volatility level of 29%. The risk-free rate is 5%, the recovery
in default is 51%, and the payout rate is 5%. The volatility dynamics under P are described by the
initial variance, a volatility of volatility (σ ) of 30%, a correlation (ρ) between the asset level and
variance shocks of −0.15, and a speed of mean reversion (κ) of 4. The default boundary is chosen to
match the default rate at 10 years. We set the risk premium parameters to the levels that match
the historical 10-year Baa-Aaa spread of 131 basis points, implying λD = 0.30, λV = −3.08. All
columns except spreads are in units of percentage points; spreads are in basis points. Panel A
provides asset and variance risk premia for three asset volatility scenarios, corresponding to the
calibration in Table I for a representative Baa firm. Panel B reports the levered index variance
risk premium implied by the parameter estimates in Pan (2002).

Panel A: Individual firm-level levered and unlevered variance risk premium

Scenario
Initial Asset

Volatility Sharpe Ratio Leverage Asset VRP Equity VRP

Low vol. 0.20 0.15 0.45 −0.0370 −0.0552
Baseline 0.29 0.22 0.45 −0.0780 −0.1091
High vol. 0.38 0.29 0.45 −0.1334 −0.1856

Panel B: S&P 500 index level variance risk premium

Initial index volatility Index VRP

15 −0.17
20 −0.304

more negative as well. The EVRP, however, does so much faster, reflecting
its embedded leverage. The lower left panel translates the volatility of unlev-
ered variance (σ ) into the volatility of equity variance. With an asset variance
volatility of 30% per annum, the equity variance volatility ranges from 30%
at zero leverage to more than 80% at 60% leverage. As the volatility of vari-
ance increases, a similar pattern is observed. Both metrics begin at zero and
become more negative as the volatility of asset variance increases. Overall,
leverage has an economically significant effect on the translation of asset to
equity variance risk premia.

Table III reports on the levels of asset and equity variance risk premia (im-
plied from equation (5)) for the Baa firm represented in Table I. For the base-
line case, where asset volatility is 29% and the Sharpe ratio is 22%, the AVRP
equals about 8%, while its levered counterpart reaches just less than 11%.
Given the diversification provided by an index, estimates for the index vari-
ance risk premium provide a conservative benchmark for what constitutes a
“high” individual EVRP. If idiosyncratic volatility risk is not priced, then for a
given level of volatility and leverage, the EVRP of an individual firm with some
idiosyncratic risk will be lower than that of the market.

To better understand this claim, note that our model attaches a variance
risk premium to the total asset volatility. We think of this as a reduced-form
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1856 The Journal of Finance R©

way of letting the systematic part of a firm’s asset variance be priced, while
acknowledging that, as a result, the numbers that our calibration implies for
λV are going to be lower than those implied by a model that explicitly dis-
tinguishes between unpriced idiosyncratic risk and priced systematic variance
risk.

For comparison with our implied levels of individual equity variance risk
premia, in Panel B, we provide the levered index variance risk premium implied
by the parameter estimates in Pan (2002). The index variance risk premium
ranges between −17% and −30% for index volatilities. Hence, our baseline
implied variance risk premium does not seem excessive.24 In fact, it is possible
that idiosyncratic variance risk does carry a premium, in which case our λV
would represent an average of the risk premium carried by the idiosyncratic
and systematic variances. We return to the distinction between systematic and
idiosyncratic variance risk in Section VI, where we discuss a model in which
both risks are modeled separately.

Another measure of risk that we discuss in some detail is the Sharpe ratio. In
a one-factor model like Merton (1974), the Sharpe ratios of all corporate securi-
ties and liabilities coincide, and any difference in leverage across instruments
influences returns and variances in the same way. However, in our two-factor
setting, this is no longer the case. Equity and debt load differently on variance
risk. To see this, consider the equity Sharpe ratio in our setting,

μE − r
σE

=
∂E
∂X(μX − r)X + ∂E

∂V VσλV

σEE
. (6)

In Merton (1974), creditors are short a put enjoyed by shareholders. In our
model, the value of this put is driven by both asset risk and variance risk. One
can think of this as shareholders benefiting from systematic variance insur-
ance sold by bondholders. The loading on the (negative) variance risk premium
in the equity Sharpe ratio, equation (6), is positive, which tends to reduce
the return required by shareholders all else equal. While leverage amplifies
asset variance and the required return on assets, it increases the loading on
variance risk, dampening the effect of leverage.25 However, there is no such
offsetting effect on the equity variance in the denominator, which leads to a
lower Sharpe ratio for higher levels of leverage. The opposite is true for debt.
In the analogue of equation (6) for debt, the variance risk premium has the
opposite effect, increased leverage amplifies returns faster than debt variance,
and hence equity Sharpe ratios are lower than their debt counterparts. This
is illustrated in Figure 2. The lower equity Sharpe ratio is reminiscent of the
distress puzzle, whereby returns on stocks for firms near financial distress

24 We have also computed the ratio of expected risk-adjusted to physical volatility at the one-
month horizon for the benchmark firm in Table I and find it to be 1.04. This can be compared with
the ratio implied by Han and Zhou (2011) for a large sample of 5,000 individual stocks, which is
higher at 1.17.

25 For a sufficiently high AVRP, this leads to a nonmonotonic relationship between leverage and
equity returns.
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Figure 2. Sharpe ratios in the presence of variance risk. This figure plots the variation in
Sharpe ratios of asset, equity, and debt as a function of a firm’s leverage ratio. The parameters are
those of the base case depicted in Table I. (Color figure can be viewed at wileyonlinelibrary.com)

appear low, given the increased risk induced by leverage. In our setting, lever-
age has two offsetting effects and may not increase returns.

On the other hand, the insurance sold by bondholders, which carries a risk
premium, makes them require higher returns and spreads. This is consistent
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with the credit spread puzzle, where a model without variance risk would tend
to underestimate spreads, and suggests that these two puzzles could be related.

We now consider an alternative specification of the AVRP before discussing
our model with jumps that we take to the data.

III. An Alternative Risk Premium Specification

In our benchmark model, we specify the variance risk premium as completely
affine in the instantaneous variance (see Dai and Singleton (2000)). In this sec-
tion, we consider an alternative, more flexible, setup where the risk premium
evolves according to the extended affine specification proposed by Cheridito,
Filipović, and Kimmel (2007).26 The Internet Appendix provides a more de-
tailed description of this setup. The impact of the change from the physical to
the risk-adjusted measure is that the Brownian motion driving the variance
dynamics shifts as follows:

dW Q
2,t = dW P

2,t +
(
λ1

√
Vt + λ2

1√
Vt

)
dt. (7)

This implies an instantaneous asset Sharpe ratio of

SRt =
√

1 − ρ2λDVt + ρ(λ1Vt + λ2)√
Vt

. (8)

Different combinations of λ1 and λ2 can be consistent with a given initial
Sharpe ratio. Table IV illustrates how varying these parameters influences
risk-adjusted default probabilities and credit spreads over a 10-year horizon.
The middle row, where λ2 = 0, corresponds to the baseline scenario in Table I.
A larger and more negative λ2 requires a less negative or even positive λ1 to
maintain the Sharpe ratio at 22%. This makes the Sharpe ratio less depen-
dent on future values for asset variance and leads to somewhat lower credit
spreads, all else equal. Conversely, as λ2 grows less negative and even positive,
the required λ1 becomes larger and more negative, making the Sharpe ratio
more sensitive to future variance, thus increasing credit spreads. Letting λ2
vary from −0.3 to 0.3 generates a range of spreads of more than 40 basis points.
However, when the variance reaches low levels, a positive λ2 will tend to gener-
ate negative Sharpe ratios. If λ2 were negative, it would generate Sharpe ratios
that are nonmonotonic in the asset variance.

26 In the literature on affine term structure models and intensity-based credit risk models, a
number of different specifications have been proposed and analyzed. For example, Duffee (2002)
proposes an essentially affine risk premium specification where the price of risk and the variance
of the state variable are less tightly connected than in completely affine models, while Cheridito,
Filipović, and Kimmel (2007) propose an extended affine representation with further embedded
flexibility. In our specific two-factor setup, the essentially affine specification reduces to the com-
pletely affine model, whereas the extended affine setting does not and provides more flexibility
than our baseline setup.
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Time-Varying Asset Volatility and the Credit Spread Puzzle 1859

Table IV
An Extended Affine Variance Risk Premium Specification and Its

Effect on Credit Spreads
This table reports on the effect of varying the parameters of the extended affine risk premium
specification in such a way that the Sharpe ratio is kept constant. The main parameters are
those in the baseline scenario in Table I: The model is calibrated to match a Sharpe ratio of 22%
and cumulative default probability of 4.9% at the 10-year horizon, at the initial volatility level
of 29%. The risk-free rate is 5%, the recovery in default is 51%, and the payout rate is 5%. The
volatility dynamics under P are described by the initial variance, a volatility of volatility (σ ) of
30%, a correlation (ρ) between the asset level and variance shocks of −0.15, and a speed of mean
reversion (κ) of 4.

QD 10Y Spread 1Y Spread 10Y λ1 λ2 θ∗ κ∗ θ∗κ∗

21 1 120 0.49 −0.3 0.103 4.15 0.43
22 1 125 −0.70 −0.2 0.105 3.79 0.40
22 1 129 −1.90 −0.1 0.107 3.43 0.37
23 1 131 −3.08 0 0.109 3.08 0.34
25 2 143 −4.27 0.1 0.113 2.72 0.31
26 2 153 −5.46 0.2 0.117 2.36 0.28
28 2 164 −6.65 0.3 0.123 2.01 0.25

The last three columns report on the risk-adjusted dynamics of the asset
variance. As we move down the rows, and λ1 becomes more negative, the long-
run mean variance (θ∗) increases together with lower levels of mean reversion
(κ∗). In the completely affine version of our model, the product of the mean
reversion speed and long-run mean of the variance remains the same under
both probability measures; this constraint is relaxed in the extended affine
setting. Decoupling the speed of mean reversion and the long-run mean vari-
ance allows more pronounced time variation in the risk premium than under a
completely affine variance risk premium, causing the model to generate higher
credit spreads.27 However, although this risk premium specification would ren-
der the model more flexible and allow higher spreads given a total variance and
Sharpe ratio, we employ our original specification as the model we ultimately
estimate. We find that it is very difficult to empirically identify the additional
parameter, especially when our model is extended to include jumps, which we
discuss next.

IV. The SVJ Model

Given the difficulties we document above for our model to fit short-term
spreads, it is natural to ask (i) whether jumps and jump risk premia can help
the model do so and (ii) whether the economic importance of the variance
risk premium remains in such a setting. To address these questions, we next
consider a jump diffusion SVJ model for the unlevered asset value.

27 Cheridito, Filipović, and Kimmel (2007) emphasize that, to avoid arbitrage in the model, the
Feller conditions are required to hold under both probability measures. In the scenario illustrated
here, these conditions are not binding.
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We assume the following dynamics for the unlevered asset price under P:

dXt

Xt
=

(
μP

X − q − λη̄P
)

dt +
√

Vt

(
ρdW2 +

√
1 − ρ2dW1

)
+ dJP

t

dVt = κ(θ − Vt)dt + σ
√

VtdW2,

where JP
t is a jump process with constant intensity λ and a random jump

size equal to ηP . Conditional on a jump, the asset value Xt jumps to
Xtexp(uP), so that ηP = exp(uP) − 1. We assume that uP is normally distributed:
uP ∼ N(ūP, γ 2). Following Pan (2002), we allow the risk-neutral relative jump
size ηQ to be different from its physical counterpart, which allows for a premium
on jump-size uncertainty. For simplicity, we abstract from a risk premium on
uncertainty related to the jump intensity. The SV dynamics are the same as in
the previous section.28

As in Section I, we specify the mean of the unlevered asset returns as a
function of the risk premia for the different sources of uncertainty. The drift of
the unlevered asset value now depends on the interest rate r, the payout rate
q, and the three risk-premium components λD, λV , and λ(η̄P − η̄Q), which are
associated with compensation for the two Brownian risks and the jump risks,
respectively.29 Let μP

X = r + (
√

1 − ρ2λD + ρλV )Vt + λ(η̄P − η̄Q).
In this specification with jumps, we are unable to derive a closed-form solu-

tion for the term structure of risk-adjusted default rates as we were for the SV
case. We resort to Monte Carlo simulation, which we couple with function ap-
proximation to make the estimation tractable. The Internet Appendix contains
a description of the methodology.

Table V reports on our SVJ model calibrated to a representative Baa firm. Our
approach is similar to the SV case discussed above. Our aim here is to study the
joint effect of jumps and SV, together with their respective risk premia, in ex-
plaining the term structure of credit spreads. Although, as expected, including
priced jumps helps fit short-term spreads and default probabilities, it does not
crowd out variance risk premia, which remain important for longer maturities.

As an initial state of the world for the Baa firm, we use total asset volatility
of 29%, as in Table I. We allow the jump contribution to total volatility to be

28 Implicitly, we force all jump risk premia to be captured by the jump size premium. Like Pan
(2002), we adopt this simplification out of concern for the difficulty in separately identifying both
sources of risk premia. Although we do not pursue this in our estimation, the estimate for the
jump size risk premium in Pan (2002) is robust to allowing for a simultaneous risk premium on the
jump event timing. In a reduced-form model, where every jump leads to default, a risk premium
naturally arises on the jump intensity (see Driessen (2005)). Both jump risk specifications have
the advantage of generating economically significant short-term spreads.

29 Our risk premium specification differs slightly from Pan (2002). She decomposes the total
premium into premia for diffusive and jump risks, while, for expositional purposes, we prefer to
have the asset drift contain a premium associated with each Brownian motion separately. Both
decompositions are equivalent and imply the same shift in the volatility drift between the objective
and the physical measures.
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Time-Varying Asset Volatility and the Credit Spread Puzzle 1861

Table V
The Term Structure of Credit Spreads: Jump Risk Premia versus

Variance Risk Premia
This table is based on a representative Baa firm. The exercise carried out in this table moves
from a scenario with a 22% Sharpe ratio determined exclusively by variance risk premia (line 1)
to scenarios with the same 22% Sharpe ratio but involving progressively greater compensation
for jump risk (η̄P − η̄Q). The diffusive risk (λD) is set to zero. In each line, 1- and 10-year default
probabilities are calibrated to historical levels of 0.2% and 4.9%, respectively. The jump intensity is
1%. As in the SV case, we set the correlation between the asset value and variance shocks to −0.15,
the volatility of asset variance (σ ) to 30%, the long-run mean variance (θ ) equal to the base-case
initial variance (0.292), and the speed of mean reversion (κ) to 4.

η̄P η̄Q λV QD1 QD10 Spread 1Y Spread 10Y

−0.77 −0.77 −6.81 0.0026 0.2858 25 172
−0.77 −0.84 −6.41 0.0058 0.2717 42 164
−0.77 −0.89 −6.02 0.0065 0.2611 51 157
−0.77 −0.92 −5.63 0.0071 0.2481 55 148
−0.77 −0.95 −5.24 0.0074 0.2349 56 140
−0.77 −0.98 −4.06 0.0075 0.2016 57 120

4%.30 In all cases, we calibrate our model to a historical default probability of
0.2% for the one-year horizon and 4.9% for 10 years.31 The mean jump size η̄P
is determined to help fit the objective default probability for a one-year horizon.
The asset value drift is determined by the Sharpe ratio and total asset variance.
As before, we impose an empirical Sharpe ratio of 22%. In the SVJ specification,
both the jump risk premium and the volatility risk premium contribute to the
level of the Sharpe ratio, which is given by

SRt = μP
X − r√

Vt
=

((√
1 − ρ2λD + ρλV

)
Vt + λ

(
η̄P − η̄Q

))
√

Vt + λ((ūP)2 + γ 2)
. (9)

The Sharpe ratio constraint, combined with matching historical levels for ob-
jective default probabilities, imposes a narrow range of admissible values for
η̄P , η̄Q, and λV necessary to match the term structure of spreads. We find that
the level of the jump risk premium is key to generating the one-year spread
while it is mainly the variance risk premium that influences medium- to long-
term maturities.

Row 1 of Table V illustrates that while a model with jumps can fit the his-
torical default probability, it generates a relatively low one-year spread of 25
basis points. For the corporate bond data used in the calibrations, we have no
observation for the one-year spread. However, for the default swap data used in
our estimation, the one-year spread averages 73 basis points while the 10-year

30 Huang and Tauchen (2005) find that about 7% of the variance in stock market index returns
is due to jumps. Andersen, Bollerslev, and Diebold (2007) estimate the proportion at just less than
15%. In our case, 4% corresponds to about 13% of total asset variance.

31 See Moody’s (2010).
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1862 The Journal of Finance R©

spread averages 130 basis points, similar to the benchmark spread of 131 basis
points we use for the 10-year corporate bond. Shutting down the jump premium
allows for a maximal amount of variance risk premium given the level of diffu-
sive volatility. The implied 10-year spread, at 172 basis points, is then higher
than the historical benchmark. As we progressively allow for a greater jump
risk premium, the complementarity of the jump and volatility risk premia in
matching different parts of the term structure becomes apparent. Keeping η̄P
constant to match the objective default probabilities, the level of η̄Q controls
the relative importance of the jump risk premium. Given our Sharpe ratio con-
straint, the increase in jump risk premium comes at the expense of the variance
risk premium.

As we increase the jump risk component, one-year spreads increase rapidly
at first and then taper off. This is due to the fact that there is some level of η̄Q
that is sufficiently large to trigger default. Beyond this level, increasing η̄Q has
no significant effect.32 However, as jump risk premia and short-term spreads
increase, λV is reduced and this induces lower 10-year spreads. Between the
last two rows, there is a combination of jump and variance risk premia that
produces the benchmark 10-year historical spread of 131 basis points with
one-year spreads more than twice as high as in the no jump risk premium case.

Note that, although the jump risk premium to some degree “crowds out” the
variance risk premium, the effect is not strong enough to preclude the premium
for variance risk from playing an important role. The level of λV that together
with jump risk matches 10-year spreads is slightly higher than what we found
in Table I. Note, however, that this higher level of λV is applied to a lower level
of diffusive volatility (25% versus 29% in Table I).

In summary, given a reasonable Sharpe ratio, our model without jumps can-
not generate sufficient spread levels or short-term default probabilities. Jumps
help fit the short-term default probability, while the risk premium helps with
the short-term spread. The presence of jumps somewhat reduces the amount of
permissible variance risk, but not enough to preclude it from helping explain
medium- and long-term spreads as before.

V. Estimating the SVJ Model

A. Estimation Methodology

For a given firm, we have seven observables: the CDS spreads at 1, 2, 3,
5, 7, and 10 years plus the equity volatility. Since we have only two states,
namely, asset value and variance, we follow the usual practice in the litera-
ture (e.g., Duffee (2002)) and assume that two variables, jointly denoted by
Y (a)

t , are accurately observed, while the other five variables, jointly denoted by
Y (m)

t , are observed with error. Specifically, we choose Y (a)
t = {cdst(5), σE,t} and

Y (m)
t = {cdst(1), cdst(2), cdst(3), cdst(7), cdst(10)}. Our choice reflects the stance

32 This limitation is an artifact of an exogenous financial distress cost proportional to the default
boundary. In a more elaborate model that may consider distress costs as a function of the jump
severity, an increase in the size of the jump may continue to contribute to larger spreads.
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Time-Varying Asset Volatility and the Credit Spread Puzzle 1863

that (i) five-year contracts are the most liquid and (ii) σE,t can be accurately
measured using option-implied volatilities. For notational convenience, we de-
note by Yt = {Y (a)

t ,Y (m)
t }.

The parameters η, α, and L, which denote the effective corporate tax rate,
the firm-level distress cost, and the bond-specific default loss, are set to
15%, 15%, and 49%, respectively, consistent with prior empirical work. For
a given firm, we obtain the time series of its payout ratios and debt ser-
vice rates, and use their averages as calibrated values for q and c. Denote
by  = {λD, λV , κ, θ, σ, ρ, Xd, η̄

Q, λ} the remaining parameters to be estimated,
where λD determines the diffusive risk premium; parameters κ, θ , and σ charac-
terize the Vt dynamics; λV determines (κ∗, θ∗) (the risk-adjusted counterparts of
(κ, θ )); ρ denotes the correlation between firm asset value and variance shocks;
Xd is the (constant) default boundary; η̄Q is the average jump size under Q; and
λ is the jump intensity under Q.

To identify the parameter vector, we use ML estimation with respect to the
P-distribution of the observables Yt. Note that contains some parameters re-
lating to the Q dynamics of the model. ML estimation requires the computation
of CDS spreads, which helps identify the Q-measure parameters. In addition,
the derivation of the P-distribution of Yt depends on the P-distribution of the
two states (zt,Vt), which helps us identify its parameters.33

Define St ≡ {zt,Vt}, the two estimated states in our model, where
zt ≡ ln(Xt/XD). Given the parameter vector , the accurately observed data
Y (a)

t can be inverted to form an implied state vector Ŝt. To facilitate the subse-
quent exposition, we write

Ŝt = F
(
Y (a)

t

)
, (10)

where F(.) denotes the functional form that maps Y (a)
t , the two variables as-

sumed to be accurately observed, into the two states. To see the identifica-
tion of St from Y (a)

t , first note that cdst(5) = Y (a)
t (1) is monotone in zt = St(1)—

intuitively, a higher zt(≡ ln(Xt/XD)) implies longer distance to default and lower
credit spreads. Second, σE,t = Y (a)

t (2) is monotone in Vt = St(2), since a higher
asset value variance is associated with a higher equity variance. Numerically,
we back out Ŝt from Y (a)

t using a two-stage grid search procedure that works
uniformly well for all firms.34

Given Ŝt, the model-implied spreads for the other five CDS contracts, which
we denote by Ŷ (m)

t , can be calculated. Let εR
t ≡ Ŷ (m)

t −Y (m)
t

Y (m)
t

∈ R
5 be the relative

33 In an earlier version of this paper, we use GMM estimation instead. An important caveat of
GMM is that the model-implied pricing moments are determined only by Q-measure parameters,
which leaves P-measure parameters unidentifiable.

34 More specifically, we choose a wide range of z and V in the first stage that cover all firms. At
the end of the first stage, we identify, for each firm, a subrange in which the implied states are
most likely to reside. We then conduct the second-stage finer grid search that precisely defines the
implied Ŝt. In both stages, we use function approximation by means of Chebychev polynomials to
represent the dependence of Y (a)

t on the states. This greatly improves the computation speed while
maintaining accuracy.
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observation error. We assume that the variance-covariance matrix of εR
t is

time invariant, which implies the Cholesky decomposition E(εR
t (εR

t )′) = CC ′.
For simplicity, we choose C = σe I5×5, where σe denotes the standard deviation
of the measurement error and I5×5 denotes the 5-by-5 identity matrix, and
conduct estimations for all firms in our sample under this specification.35

What remains is to derive pY , the P-distribution of Y (a)
t . In our model, the

P-measure state transition density of ST conditional on St is not available in
closed form. We therefore use the simulated maximum likelihood estimation
(SMLE) method proposed by Brandt and Santa-Clara (2002) and resort to
simulation to approximate the state transition density p(Stn+1 , tn+1|Stn, tn) for
two adjacent discrete observation times tn and tn+1. We then apply the mapping
from our states to the implied Y (a)

t , as summarized by (10), to obtain pY from
p.

Normalizing the length of [tn, tn+1] to one, we choose the popular Euler
discretization scheme and divide this interval into M subintervals of length
h = 1/M. The Euler discretization of the two state vectors St = (zt,Vt) in
[tn, tn+1], denoted by (ẑtn+mh, V̂tn+mh) for m = 0,1, . . . ,M − 1, follows[

ẑtn+(m+1)h

V̂tn+(m+1)h

]
=

[
ẑtn+mh

V̂tn+mh

]
+ ν(.)h +�(.)

√
h
[
εz

εV

]
+

[
Uz
0

]
N(h), (11)

where

ν(.) =
[

r − q +
(√

1 − ρ2λD + ρλV − 1
2

)
V̂tn+mh − λQη̄Q

κ(θ − V̂tn+mh)

]
, (12)

�(.) =
⎡
⎣√

1 − ρ2
√

V̂tn+mh ρ

√
V̂tn+mh

0 σ

√
V̂tn+mh

⎤
⎦, (13)

[εz, εV ]′ is the two-dimensional standard normal random variates, Uz ∼P

N(ūP, γ 2), and N(h) denotes the Poisson process over a small time interval
h with intensity λh.

Denote by ψ(Stn+1 |Stn+(M−1)h) the one-step-ahead state transition density of
the Euler discretization from tn + (M − 1)h to tn+1(= tn + Mh). The original
SMLE as in Brandt and Santa-Clara (2002) relies on pure diffusions, under
which ψ can simply be approximated by (joint) normal distributions. As this
is not the case with jumps, we simplify our analysis by assuming that there is
at most one jump over a small time interval h. More specifically, if there is no
jump between tn + (M − 1)h and tn+1, ψ takes the approximation form

φ(2)
([

ẑtn+1

V̂tn+1

]
;
[

ẑtn+(M−1)h

V̂tn+(M−1)h

]
+ ν(.)h, �(.)�(.)′h

)
, (14)

35 We have considered alternative specifications for C, and the results continue to hold.
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Time-Varying Asset Volatility and the Credit Spread Puzzle 1865

where φ(2) denotes a bivariate normal density. If a jump does occur, its impact
on the z-innovation between tn + (M − 1)h and tn+1 dominates that from the
diffusions over a small interval h. We can thus attribute all of ẑtn+(M−1)h − ẑtn+1

to the realized jump, and in this case ψ can be approximated by

φ(1)
(

V̂tn+1 ; V̂tn+(M−1)h + κ(θ − V̂tn+(M−1)h)h, σ 2V̂tn+(M−1)hh
)

× φ(1)
(

ẑtn+1 ; ūP, γ 2
)
, (15)

where φ(1) denotes a univariate normal density. Specifically, (15) follows from
(i) the fact that the V -diffusions are independent of z-jumps and (ii) the jump
size of z, Uz, is normally distributed with mean ūP and variance γ 2. The ap-
proximations of both (14) and (15) are exact as h → 0.

In view of the Euler discretization and the definition ofψ , the state transition
density p(Stn+1 , tn+1|Stn, tn) can be approximated through recursive integration
as follows:

pM(
Stn+1 , tn+1|Stn, tn

) =
∫ ∫

ψ
(
Stn+1 |x

) × pM(
x, tn + (M − 1)h|Stn, tn

)
dx, (16)

where x denotes a particular realization of Stn+(M−1)h ∈ R × R+. We can inter-
pret the integral in (16) as the expectation of the function ψ of the random vari-
able x, where the distribution of x is f (x) = pM(x, tn + (M − 1)h|Stn, tn). Again
following Brandt and Santa-Clara (2002), we use Euler discretization as in (11)
to simulate a large number of independent random draws xj for j = 1,2, . . . ,N
from the distribution f (x).36 We then approximate the expectation, and ulti-
mately the corresponding transition density p, with a sample average of the
function ψ evaluated at these random draws of x, that is,

p̂M,N(
Stn+1 , tn+1|Stn, tn

) = 1
N

N∑
j=1

ψ
(
Stn+1 |xj

)
dx, (17)

where xj for j = 1,2, . . . ,N represents independent realizations of Stn+(M−1)h
after M − 1 Euler recursions according to (11) starting from Stn. The Strong Law
of Large Numbers guarantees that p̂M,N converges to the transition density p
as N,M → ∞ .37

To implement (17), we need to decide, for a given path of the simulated
x = (ẑtn+(M−1)h, V̂tn+(M−1)h), on the threshold under which the z-innovation be-
tween tn + (M − 1)h and tn+1 is attributed to a jump. We pick this threshold to
be 1

4 ūP(< 0), where ūP is the average jump size of zt under P. Our choice ac-
counts for the stochastic nature of the jump magnitude, and it roughly matches
the jump intensity of λh between tn + (M − 1)h and tn+1. Thus, ψ takes (14) and
(15) for ẑtn+1 − ẑtn+(M−1)h > and < 1

4 ūP , respectively. Under this scheme and at

36 More precisely, for each xs, we start at time tn and iterate through the Euler recursion (11)
exactly M − 1 times to get one xs. We repeat this procedure S times, which yields the random
sample {x1, x2, . . . , xS}.

37 In more detail, p̂M,N converges to pM as N → ∞, and pM converges to p as M → ∞ (or
equivalently h → 0). See Brandt and Santa-Clara (2002) for the detailed proofs.
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the monthly frequency of the observed data, we find that an M of 30 to 40 and
an N of 50,000 to 100,000 are sufficient to achieve convergence.

Given the simulated p (Stn+1 , tn+1|Stn, tn), the P-distribution of Y (a)
tn+1

conditional
on Y (a)

tn is given by

pY

(
Y (a)

tn+1
, tn+1|Y (a)

tn , tn
)

= 1∣∣det
(
Jtn+1

)∣∣ p
(
Stn+1 , tn+1|Stn, tn

)
, (18)

where

Jt ≡
[
∂Y (a)

t (1)
∂St(1)

∂Y (a)
t (1)

∂St(2)
∂Y (a)

t (2)
∂St(1)

∂Y (a)
t (2)

∂St(2)

]
=

[
∂cdst(5)
∂zt

∂cdst(5)
∂Vt

∂σE,t
∂zt

∂σE,t
∂Vt

]
. (19)

In (19), the relation between Y (a)
t and St is due to the implied mapping in (10).

Specifically, we use Chebychev interpolation (see, e.g., Miranda and Fackler
(2002)) to fit model spreads as functions of the states, which also significantly
facilitates the computation of Jt.

Returning to Y (m)
t , we denote their joint distribution by fε(εt; Y (m)

t ), where
εt ∈ R

5 is the relative observation error, which is assumed to be normally dis-
tributed with variance-covariance matrix σ 2

e I5×5. The log likelihood function
for observations at tn is then

ltn() = log pY

(
Y (a)

tn , tn|Y (a)
tn−1
, tn−1

)
+ log fε

(
εtn; Y (m)

tn

)
(20)

= log p
(
Stn, tn|Stn−1 , tn−1

) − log
∣∣det

(
Jtn

)∣∣ + log fε
(
εtn; Y (m)

tn

)
,

where p(St1 , t1|St0 , t0) denotes the simulated unconditional state distribution.
Due to a relatively long time series of our sample, we find that assuming a
degenerate p(St1 , t1|St0 , t0) incurs very limited information loss compared to
that using the unconditional distribution of St. Our estimation is thus based
on

max


L() =
T∑

n=2

ltn(), (21)

where  = {λD, λV , κ, θ, σ, ρ, Xd, η̄
P, η̄Q, σ, λ}, and T denotes the number of ob-

servations. Specifically, we use monthly data, with T equal to 84 for most firms.
We consider various ways to choose reasonable initial values for . For the

two risk premium parameters, we perform a calibration similar to Table I for
each rating category and use the implied λD and λV as their initial values. For
the rest of the nonjump parameters, {κ, θ, σ, ρ, Xd}, we set their (firm-by-firm)
initial values to their GMM estimates without jumps from a previous version of
our paper. For the jump-related parameters, we set the initial intensity value
based on short-term CDS spreads normalized by the loss rate. The jump sizes
are chosen based on short-term historical default rates by credit rating.
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Time-Varying Asset Volatility and the Credit Spread Puzzle 1867

B. Data

We collect single-name CDS spreads from Markit. Daily CDS spreads reflect
the average quotes contributed by major market participants. This database
has already been cleaned to remove outliers and stale quotes. We require that
two or more banks contribute spread quotes to include an observation (Cao,
Yu, and Zhong (2010)). The data sample available to us includes only those
firms that constituted the CDX index from January 2001 to December 2013.
Our sample includes U.S. dollar-denominated CDS contracts written on senior
unsecured debt of U.S. firms. We use maturities of 1, 2, 3, 5, 7, and 10 years.
Table VI summarizes our CDS data and key firm-level variables.

The range of restructurings that qualify as credit events varies across CDS
contracts from no restructuring (XR) to unrestricted restructuring (CR). Modi-
fied restructuring (MR) contracts that limit the range of maturities of deliver-
able instruments in the case of a credit event are the most popular contracts
in the United States. We therefore include only U.S. dollar–denominated con-
tracts on senior unsecured obligations with modified restructuring (MR).

Following Huang and Zhou (2008), we perform our test on monthly data.
Their sample is restricted to 36 monthly intervals as their sample ends in
2004. Instead, we require that the CDS time series have at least five years of
consecutive monthly observations to be included in the final sample. We also
require that CDS data have matching equity prices (CRSP), equity volatility
(TAQ), and accounting variables (Compustat). We further exclude the financial
and utility sectors, following previous empirical studies on structural models.
After applying these filters, we are left with 49 entities in our study.

In testing structural models, asset return volatility is unobserved and is
often backed out from the observed equity return volatility. We collect implied
volatility data from the OptionMetrics database on the last trading day of each
month. Commonly used option data filters including those proposed by Bakshi,
Cao, and Chen (1997) are applied. Specifically, we discard all options with zero
volume, zero open interest, and best bid price less than $0.1, as well as those
that violate no-arbitrage bounds. We then pick the at-the-money (ATM) options
with the shortest time to maturity. We define ATM by its moneyness using the
Black-Scholes delta closest to 0.5 for calls and −0.5 for puts.

C. Estimation Results

In this section, we discuss our findings from a firm-by-firm estimation of
the SVJ model. Although we proceed directly to the SVJ case in our empiri-
cal exercise, we also carried out an SV-only estimation, the results of which
are reported in the Internet Appendix. Table VII provides a summary of the
parameter estimates.38

Perhaps the most important parameter for our purposes is λV . We obtain
a broad range of estimates with 95% in the [−2.80, −0.01] range. The mean

38 Firm-by-firm parameter estimates and standard errors for the SVJ estimation are provided
in the Internet Appendix.
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Table VII
Summary Statistics of SVJ Parameter Estimates

This table summarizes the parameter estimates obtained for our estimation of the SVJ model.
We denote the variance risk premium parameter by λV , the speed of mean reversion by κ, the
long-run mean variance by θ , the volatility of variance by σ , the correlation between the Brownian
motions defining asset value and variance shocks by ρ, and the spread observation error by σe. The
jump parameters are the risk-adjusted mean jump size, η̄Q, and the jump intensity, λ. The last
two columns provide the risk-adjusted version of the speed and level of mean reversion, κ∗ and θ∗.
Panel B reports the corresponding standard errors.

Panel A: Parameter estimate quantiles

Quantile λV κ θ σ ρ η̄Q λ σe κ∗ θ∗

5 −2.796 0.463 0.009 0.110 −0.296 −0.938 0.001 0.197 0.155 0.027
25 −2.281 1.926 0.017 0.305 −0.215 −0.901 0.002 0.288 1.229 0.027
50 −1.756 3.231 0.030 0.398 −0.157 −0.803 0.004 0.341 2.533 0.038
75 −1.134 4.028 0.042 0.610 −0.116 −0.650 0.009 0.416 3.336 0.050
95 −0.098 5.965 0.070 0.835 −0.006 −0.295 0.046 0.782 5.883 0.071
Mean −1.675 3.146 0.032 0.447 −0.161 −0.810 0.010 0.392 2.397 0.042

Panel B: Standard error quantiles

Quantile λV κ θ σ ρ η̄Q λ σe

5 0.0181 0.0347 0.0005 0.0070 0.0017 0.0159 0.0000 0.0211
25 0.0520 0.1713 0.0019 0.0159 0.0058 0.0692 0.0002 0.0326
50 0.1130 0.3570 0.0036 0.0372 0.0148 0.1223 0.0003 0.0434
75 0.2722 0.7760 0.0065 0.0821 0.0310 0.3706 0.0008 0.0764
95 1.2714 3.6925 0.0351 0.5721 0.1542 2.0774 0.0180 0.2862
Mean 0.3601 0.9577 0.0078 0.1374 0.0400 0.5153 0.0048 0.1095

is −1.675, which is smaller in absolute terms compared to what we found
in our calibrations. The mean reversion speed parameter κ averages 3.15,
which is in line with estimates from S&P 500 returns in, for example, Bates
(2006). The average of the long-run volatility (θ ) is 0.032. The estimation error
averages 0.392. We also report risk-adjusted versions of the speed and level of
mean reversion.

The results in Table VII confirm that it is large infrequent jumps that
the data requires. The average intensity across firms is around 0.5%, with
cross-sectional variation from 0.1% to 4.6%. The firm-by-firm average one-year
spread in our data varies from 13 basis points to 654 basis points.39 The mean
Q jump size η̄Q is significant across all firms with an average of −81%. It is
interesting to note that we do have firms for which the jump intensity and size
are zero. These are cases in which we are unable to identify jump risk parame-
ters that improve the likelihood over the best SV estimates. Most of these firms
also have well below average one-year spreads. For those firms, it appears that
variance risk is enough to explain the term structure of spreads.

39 The one-year spread for Ford Motor reached 1,222 basis points in February 2009.
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Table VIII
Pricing Performance of the SVJ Model

This table reports summary statistics for root mean squared pricing errors (RMSE) in basis points,
as well as relative RMSE (RRMSE), resulting from our estimation of the SVJ model on 49 firms
between 2001 and 2013.

Quantile RMSE 1 RMSE 2 RMSE 3 RMSE 7 RMSE 10

5 9 6 4 5 8
25 20 11 8 7 12
50 27 20 13 10 18
75 56 36 23 15 25
95 438 227 154 65 114
Mean 75 44 32 25 36

Quantile RRMSE 1 RRMSE 2 RRMSE 3 RRMSE 7 RRMSE 10

5 0.40 0.24 0.16 0.08 0.13
25 0.46 0.29 0.19 0.10 0.15
50 0.52 0.32 0.22 0.12 0.18
75 0.69 0.42 0.26 0.14 0.22
95 1.00 0.59 0.37 0.21 0.30
Mean 0.61 0.37 0.24 0.13 0.19

The variation in η̄Q demonstrates that the jump risk premium varies across
firms.40 Note that the jump risk premium, defined as the ratio between risk-
adjusted to physical jump sizes, is smaller in our analysis compared to Pan
(2002).41 Pan (2002) examines the jump premium embedded in an equity index,
while we focus on firm-by-firm estimation of asset value jumps. First, jumps
in equity are amplified by leverage. Second, diversification in the index would
lead to the remaining jumps being systematic and priced. At the firm level,
on the other hand, some of the jump risk is idiosyncratic and does not carry
a premium.

Turning our attention to the in-sample fit, we present the RMSE for matu-
rities of 1, 2, 3, 7, and 10 years. We omit the five-year maturity and equity
volatility because they are used to filter the states and hence exhibit no pricing
errors. Summaries of the errors are reported in Table VIII while firm-by-firm
results are reported in the Internet Appendix. The largest pricing errors are to
be found at the shorter end of the maturity spectrum. There is no particular pat-
tern across absolute and relative errors in the cross-section. In the time-series

40 Elkamhi and Ornthanalai (2010) document the presence and cross-sectional variation of
equity jump risk and jump risk premia at the firm level.

41 Pan (2002) estimates a risk-adjusted jump size of about −19% with a physical counterpart of
about −1%. While our mean physical and risk-adjusted jump size are much larger at −70% and
−81%, respectively, the differences and ratios of the two kinds of jump sizes are larger in Pan
(2002).
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dimension, however, basis point (and to a lesser extent proportional errors)
increase significantly during the recent financial crisis.42

Overall, we find that in an SVJ model, the variance risk and jump risk
premia are both important. Figure 3 compares the pricing performance of our
SVJ model with two nested models: a constant volatility (CV) model comparable
to Black and Cox (1976) and Leland (1994), and our model with jumps removed
(SV). In terms of predicting the level of spreads, we see that the gains from
the SV specification over the CV model are particularly significant in the 1
to 3 years to maturity bracket. The bias at one year is halved and at two
years almost entirely gone. The additional gains from the inclusion of jumps in
this aspect is an additional significant reduction in bias for the shortest, one-
year maturity. In terms of root mean squared pricing errors, a similar picture
emerges. The biggest improvement takes place when moving from the CV to
SV model, particularly at the shorter maturities. The most significant gains
from the inclusion of jumps are also made at the short end.

While we show in Section IV that our simple jump structure helps generate
the levels of short-term spreads, the story is more nuanced when the model is
estimated at the firm-by-firm level. In the estimation, the choice of securities
to fit, as well as the loss function, may implicitly favor diffusive risk over
jumps. As we have seen in the calibration section, medium and long maturities
are more sensitive to volatility risk. There is only one short maturity (one
year) in our data.43 The other CDS maturities used in our estimation are 2,
3, 5, 7, and 10. Thus, by construction, our likelihood places more weight on
medium- to long-term maturities, which are also more sensitive to variance
risk than jump risk. Matching shorter maturities requires jumps. But as we
have seen, increasing short-term spreads by means of more jump risk comes
at the expense of the ability to generate long-term spreads (since we match
total equity volatility). Hence, our SMLE procedure may sacrifice the ability
to fit short-term spreads in order to fit the medium to long term. In addition,
the tension between short- and long-term spreads is exacerbated in periods of
upward-sloping spread term structures, which are common to most of our data
save during the financial crisis.

Another factor in the underestimation of short-term spreads is that the one-
year spread may be more influenced by illiquidity risk than other maturities.
Since our model abstracts from illiquidity risk, a downward bias in short-term
spreads may in fact be reasonable.44

An advantage of our structural credit risk model is that, as a by-product of
our estimation, we can compute other firm-level quantities. For example, since
we identify both physical and risk-adjusted asset value and volatility dynamics,

42 There is evidence that fixed income markets experienced significant disruptions during this
period: Bid-ask spreads were high (Marra (2017)), and the CDS-bond basis diverged and became
negative (Bai and Collin-Dufresne (2018)), suggesting that arbitrage activity between markets
became more difficult. This may explain the larger pricing errors for our model during this period.

43 Note that the maturities considered in the large literature on SV in equity options markets
are much shorter.

44 We consider an extension to address illiquidity risk in the Internet Appendix.
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Figure 3. Relative performance of the SVJ and the nested SV and CV models. This figure
summarizes the pricing performance of the SVJ model specification and compares it to the nested
stochastic volatility (SV) and constant volatility (CV) models. The top panel in this figure plots
the median bias, that is, the model minus market spreads in basis points, per maturity segment.
The median bias is calculated across the predicted spreads for the 49 firms in our sample. The
second panel plots the basis point root mean squared error for the two model specifications across
maturity segments for the same sample of firms. Recall that, in our estimation, the five-year CDS
spread is assumed to be perfectly observed, so no pricing error results. (Color figure can be viewed
at wileyonlinelibrary.com)
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Table IX
Predicted Economic Quantities

This table reports summary statistics for various model-predicted economic quantities as well as
pricing errors resulting from our estimation of the SVJ model for 49 firms between 2001 and 2013.
The equity variance risk premium (EVRP) is computed using equation (5). The Sharpe ratio is
computed using equation (1).

Physical Default Prob. Sharpe

Quantile EVRP One-Year Four-Year 10-Year Ratio

5 −0.441 0.000 0.004 0.023 0.032
25 −0.207 0.001 0.011 0.042 0.084
50 −0.134 0.003 0.025 0.081 0.124
75 −0.070 0.006 0.044 0.146 0.206
95 −0.015 0.049 0.130 0.296 0.289
Mean −0.167 0.008 0.039 0.106 0.143

we compute physical default probabilities, measures of variance risk premia,
and Sharpe ratios. These quantities allow us to assess the economic soundness
of our estimates beyond the in-sample fit. In Table IX, we provide summary
statistics for a selection of economic quantities of interest. Our measure of
the equity-level variance risk premium, EVRP, ranges between close to zero
and −44%, averaging −17% per annum. The average EVRP is higher than our
calibrated value of −11% for a representative Baa firm, although the median,
at 13%, is closer.

Default probabilities average 0.8% for one year and 10.6% for 10 years.
These numbers are somewhat higher than the historical average default rates
reported by Moody’s for Baa-rated firms during the 1920 to 2010 period of 0.29%
and 6.91%, respectively. Note that our sample contains firms that are higher
rated than Baa and firms that are lower rated than Baa. Historical default rates
are asymmetric across ratings. In particular, historical default rates are almost
three times higher for Ba than for Baa firms, while Baa rates are only twice as
high as A rates. Taking an average of historical default rates using the rating
distribution from our sample leads to a higher historical rate slightly greater
than 8%. In addition, our distribution of estimated default probabilities is quite
wide. Half of the one-year default probabilities lie between 0.1% and 0.6%. For
the 10-year horizon, the range is 4.2% to 14.6%. The historical default rates
are well within our estimated ranges for both horizons. Our median estimates
of 0.3% and 8.1% are much closer to the historical rates. We conclude that
our model’s ability to fit spreads does not come at the expense of implying
unreasonable physical default probabilities.

Figure 4 summarizes the model’s empirical performance. The top two panels
illustrate the time series of market and model spreads for 1- and 10-year
maturities. In addition, they plot the model spreads with variance risk premia
and jump components removed. Even with jumps, our model has trouble fitting
one-year spreads on average both early in our sample, until 2004, and around
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Figure 4. Credit spreads and risk premia. The two upper panels plot (for the 1- and 10-year
tenors, respectively) mean market spreads, full model spreads, and spreads where we shut down
the variance risk premium and jumps in the model. The middle left panel plots the average option-
implied equity volatility. The middle right panel plots the proportion of variance risk premium
(VRP) in spreads for firms rated A to AAA (“high rating”), those rated BBB, and those rated less
than BBB (“low rating”). The lower left panel plots spreads with and without risk premia. The
“Full” line represents the complete SVJ model with all risk premia as estimated. The lowest line
represents the expected loss component of the term structure that would obtain in a constant
volatility (CV) model, and the next two lines represent the expected loss components in the full
model (SVJ) and the stochastic volatility model without jumps (SV). The bottom right panel plots
the term structures of total risk premia, diffusive risk premia (DRP), variance risk premia (VRP),
and jump risk premia (JRP). (Color figure can be viewed at wileyonlinelibrary.com)
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the financial crisis. Shutting down jumps would have the most adverse effect
on the level of model spreads, consistent with our calibration exercises. For
10-year default swaps, the model tracks levels of market spreads quite well,
with the exception of a degree of underestimation after the financial crisis.
Shutting down jumps would have a negligible effect on model spreads, while
removing the variance risk premium from spreads would lead to a significant
reduction in model spreads.

The middle left panel plots the average option-implied equity volatility. It is
clear that the time series of average spreads peak at times of high volatility. The
middle right panel illustrates the proportion of spreads due to variance risk
premia over time for different credit ratings. Interestingly, in a relative sense,
more highly rated firm spreads contain more of a variance risk premium—
about 40% for firms rated A to AAA. BBB firm spreads contain about 35%
variance risk premia, while the proportion for the speculative-grade firms in
our sample is about another 5% lower.

The lower two panels consider average term structures of spreads and show
how these depend on different types of risk premia. The lower left panel plots
total spreads and expected loss spreads (spreads computed using P default
probabilities) based on the CV, SV, and SVJ models. The expected loss spread
when stochastic asset variance and jumps are removed is about 20 basis points
lower than when they are present. The difference between the expected loss
spreads with or without jumps is quite small but larger for the shorter matu-
rities. On average, the risk premium makes up about half of the total spread.
The lower right panel focuses on the risk premium components. Within the
total risk premium, the largest component is the variance risk premium, the
second is the diffusive premium that would obtain in a Black and Cox (1976)
model, while the smallest component is the jump risk premium, which is the
only component that is decreasing in maturity.

Overall, we find that the AVRP contributes significantly to empirical levels
of spreads. Jump risk and the corresponding risk premium are smaller but
important in explaining shorter maturity spreads.

VI. Extensions

A. Endogenous Default

In our baseline stochastic asset volatility model, we assume an exogenous
fixed default boundary. This allows us to derive a quasi-closed-form solution.
However, an exogenous default boundary ignores the influence of volatility on
the optionality of equity and thus on the optimal default policy of a firm run
in the interests of shareholders. We know from Leland (1994) that in the CV
case, the endogenous default boundary is decreasing in the level of asset risk.
The greater the volatility, the more valuable the optionality and hence share-
holders will choose to default at a lower level of asset value. There is no reason
that this intuition should not carry over to our setting. However, a complication
that arises is that one of the key determinants of the boundary is stochastic.
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To endogenize the optimal default policy, we solve the model by means of
least squares Monte Carlo.45 This allows us to compute, at any point in time
and for any combination of asset value and variance, the value of servicing
debt and keeping the firm alive, versus defaulting.46 So instead of a default
boundary being a line, it is a surface in the value and volatility dimensions.
Figure 5 provides comparative statics based on the baseline parametrization
in Table I. In the top panel, we examine the role of SV. The black line plots
the boundary in Leland (1994) as a function of constant asset volatility. The
other lines plot the default boundary for a given point in time as a function of
realized asset volatility, given a long-run mean equal to the constant level in
Leland (1994).

Consider the dashed line, which represents a combination of volatile asset
volatility and slow mean reversion. The slope of the relationship has the same
sign as in the Leland (1994) case but is lower, reflecting the fact that observ-
ing the level of asset volatility is now less informative than in the CV case.
Increasing the speed of mean reversion works like a reduction in volatility and
increases the boundary. It also slightly decreases the slope, suggesting that
when mean reversion is strong, the particular level of the variance is less im-
portant than the long-run mean. Reducing the volatility parameter makes the
boundary behave more similarly to that in the CV case.

Negative correlation between asset variance and value shocks decreases the
level of the boundary, as on average volatility will be higher when approaching
the boundary, thus increasing equity optionality. Finally, variance risk premia
reduce the boundary. It is risk-adjusted volatility that matters for equity prices,
so the presence of variance risk increases the patience of shareholders and
reduces the boundary.

B. Capital Structure

We have shown that variance risk plays a role in the default decision. Vari-
ance risk benefits shareholders, all else equal. But the effect of a lower default
boundary is dominated by the impact of increased risk-adjusted variance on
the probability of hitting the boundary. In a trade-off model, this translates
into higher risk-adjusted probabilities of default, which should increase dis-
tress costs and lower the value of the tax shield. Figure 6 illustrates this effect.
It plots levered firm value as a function of leverage for two firms that are iden-
tical save the presence or absence of variance risk premia. Without variance
risk premia, firm value reaches a peak at leverage a little higher than 70%.
With variance risk premium, optimal leverage is reduced significantly, as is the

45 See Longstaff and Schwartz (2001), who develop a tractable method to value American options
by simulation. The main insight is that least squares regressions can be used to estimate the
conditional expected value of continuation for a security holder faced with a decision to exercise
an option or wait. The method is easy to apply in multifactor situations like the one at hand in
this paper.

46 McQuade (2018) also considers endogenous default in a similar setting. He finds that it helps
him fit spreads in the cross section of credit ratings.
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Figure 5. Stochastic volatilty, variance risk, and the firm’s default policy. This figure
illustrates how a firm’s endogenous default policy depends on the firm’s asset variance dynamics.
The first two panels show how the default boundary depends on the parameters that govern
the physical dynamics of asset variance. The final plot considers the influence of a variance risk
premium (VRP) on the default decision. As a benchmark, we also plot the constant volatility
boundary in Leland (1994), to which ours converges in the limit when asset variance becomes a
constant. (Color figure can be viewed at wileyonlinelibrary.com)

level of levered firm value. These optimal leverage ratios are still high com-
pared to the data. We assume a marginal tax rate of 35% and distress costs of
50% of asset value at default. These numbers are chosen to be consistent with
Figure 7 in Leland (1994). More recent work uses lower tax rates (based on Gra-
ham (2000)) and lower bankruptcy costs (based on Andrade and Kaplan (1998),
who report numbers about a third as large). It could be the case, however, that
costs at default are in fact much higher ex ante than those observed ex post (see,
e.g., Glover (2016)) or that distress costs are realized prior to default (see, e.g.,
Elkamhi, Ericsson, and Parsons (2012)). In addition, the dependence of
bankruptcy costs on the state of the economy may be an alternative mecha-
nism that influences the level of the optimal leverage. That said, while clearly
only one among several potentially contributing factors, the presence of a
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Figure 6. Stochastic volatility, variance risk, and the firm’s leverage policy. The tax rate
is assumed to be 35% and the proportional costs of financial distress, realized at default, amount to
50%. The initial asset variance is 0.22, the speed of mean reversion κ is 4, the correlation between
the asset value and variance shocks ρ is −0.15, and the volatility of asset variance σ is 0.30. The
default boundary is endogenous. (Color figure can be viewed at wileyonlinelibrary.com)
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variance risk premium does have the potential to help resolve the low leverage
puzzle.47

When we perform firm-by-firm estimation, we document significant hetero-
geneity in parameters related to jump and variance risk. Given we have shown
that these risks influence firms’ default and leverage decisions, it would be
interesting to examine whether variation in these risks and the associated
premia may help explain the empirical variation in firms’ financing decisions.

VII. Conclusion

In this paper, we develop, evaluate, and estimate a first-passage-time struc-
tural credit risk model with priced SV to address the credit spread puzzle
documented in Huang and Huang (2012) and further studied by CCG, among
others. The key feature of this model is time variation in Sharpe ratios induced
by a variance risk premium assumed to be proportional to asset variance. In
addition, our model predicts lower Sharpe ratios for debt than equity, a finding
suggestive of a link between the credit spread and distress premium puzzles.

We first evaluate our model by means of calibrations for representative Baa-
and Aa-rated firms. We replicate the credit spread puzzle in the absence of
variance risk and show that it can be resolved for medium- to longer-term
maturities by allowing for a variance risk premium consistent with reasonable
firm-level Sharpe ratios. Without jumps, however, the model is unable to fit
shorter term credit spreads. Hence, in our empirical implementation we allow
for jumps. Empirically, we study the ability of our model to jointly explain the
dynamics of credit spreads and equity volatilities, a task that has been shown
to be out of the reach of constant volatility structural credit risk models. The
additional factor for asset variance permits our model to fit equity volatilities
well, while significantly improving the fit for CDS prices relative to a nested
constant volatility model. The estimation identifies economically significant
variance risk premia and highlights that they explain an important part of
spread levels.

We extend the model to study the role of variance risk in a firm’s default and
capital structure decisions. We find that shareholders pursue a more patient
default policy (lower default boundary) but more conservative leverage policy
in the presence of a variance risk premium.

The technical contribution of our paper—closed-form analytics for a first-
passage-time SV model—has many obvious applications for the credit risk
literature. More generally, we believe there are numerous applications in the
real options literature, where investment and volatility are closely related.

Initial submission: January 17, 2013; Accepted: December 31, 2017
Editors: Bruno Biais, Michael R. Roberts, and Kenneth J. Singleton

47 We repeated the exercise for various combinations of tax rates and distress costs. The results
are qualitatively the same—optimal leverage ratios, and firm values at those leverage levels, are
lower in the presence of a variance risk premium.

 15406261, 2019, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.12765 by U

niversity O
f T

oronto M
ississauga, W

iley O
nline L

ibrary on [16/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Time-Varying Asset Volatility and the Credit Spread Puzzle 1883

REFERENCES

Aı̈t-Sahalia, Yacine, and Robert Kimmel, 2007, Maximum likelihood estimation of stochastic
volatility models, Journal of Financial Economics 83, 413–452.

Andersen, Torben G., Tim Bollerslev, and Francis X. Diebold, 2007, Roughing it up: Including
jump components in the measurement, modeling, and forecasting of return volatility, Review
of Economics and Statistics 89, 701–720.

Andrade, Gregor, and Steven N. Kaplan, 1998, How costly is financial (not economic) distress?
Evidence from highly levered transactions that became distressed, Journal of Finance 53,
1443–1493.

Bai, Jennie, and Pierre Collin-Dufresne, 2018, The determinants of the CDS-bond basis during the
financial crisis of 2007-2009, Financial Management, forthcoming.

Bansal, Ravi, and Amir Yaron, 2004, Risks for the long run: A potential resolution of asset pricing
puzzles, Journal of Finance 59, 1481–1509.

Bates, David, 2006, Maximum likelihood estimation of latent affine processes, Review of Financial
Studies 19, 909–965.

Berndt, Antje, Rohan Douglas, Duffie Darrell, and Mark Ferguson, 2018, Corporate credit risk
premia, Review of Finance, 22, 419–454.

Bhamra, Harjoat, Lars-Alexander Kuehn, and Ilya A. Strebulaev, 2010, The levered equity risk
premium and credit spreads: A unified framework, Review of Financial Studies 23, 645–703.

Black, Fisher, and John C. Cox, 1976, Valuing corporate securities: Some effects of bond indenture
provisions, Journal of Finance 31, 351–367.

Bongaerts, Dion, Frank de Jong, and Joost Driessen, 2011, Derivative pricing with liquidity risk:
Theory and evidence from the credit default swap market, Journal of Finance 66, 203–240.

Brandt, Michael, and Pedro Santa-Clara, 2002, Simulated likelihood estimation of diffusions with
an application to exchange rate dynamics in incomplete markets, Journal of Financial Eco-
nomics 63, 161–210.

Campbell, John Y., and John H. Cochrane, 1999, By force of habit: A consumption-based explana-
tion of aggregate stock return behaviour, Journal of Political Economy 107, 205–251.

Campbell, John Y., Jens Hilscher, and Jan Szilagi, 2008, In search of distress risk, Journal of
Finance 63, 2899–2939.

Cao, Charles, Fan Yu, and Zhaodong Zhong, 2010, The informational content of option-implied
volatility for credit default swap valuation, Journal of Financial Markets 13, 321–343.

Chen, Hui, 2010, Macroeconomic conditions and the puzzles of credit spreads and capital structure,
Journal of Finance 65, 2171–2212.

Chen, Long, Pierre Collin-Dufresne, and Robert S. Goldstein, 2009, On the relationship between
the credit spread puzzle and the equity premium puzzle, Review of Financial Studies 22,
3367–3409.
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