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1 Introduction

Does macroeconomic risk explain expected returns on corporate bonds? Despite the

size of the corporate bond market, there is no agreement in the literature on economic

determinants of corporate bond risk premiums. In this article, we use large panel data of

bond returns and show that wealthy households’ consumption growth accumulated over

the long horizon can explain the cross-sectional variation in risk premium.

But before examining the data, why in the first place should consumption risk explain

corporate bond risk premiums? First, there is evidence in the literature that long-run con-

sumption risk explains the aggregate credit spreads (e.g. Bhamra, Kuehn, and Strebulaev

(2010b), Chen (2010), and Kuehn, Schreindorfer, and Schulz (2021)). Since credit spreads

can be decomposed into risk premiums and expected losses, a model that explains credit

spreads should also explain risk premiums on corporate bonds.

Second, Gilchrist and Zakrajšek (2012) empirically show that credit spreads are a strong

predictor of economic growth. Thus, changes in credit spreads – roughly equivalent to

bond returns – should also predict future consumption growth (which we confirm in the

data), leading to comovement between bond returns and expected consumption growth.

If investors have Epstein-Zin preferences, shocks to expected consumption growth carry a

large price of risk, and thus assets that co-move with such shocks earn risk premiums. This

evidence in the literature suggests that long-run consumption risk is a prominent candidate

that explains corporate bond risk premiums.

However, the ability of long-run consumption risk to explain bond premiums is far from

obvious due to an increasingly popular view that financial intermediaries rather than house-

1

Electronic copy available at: https://ssrn.com/abstract=3669068



holds are the marginal investors who price assets. According to this view, a household’s

consumption growth will not align with asset returns, and thus it does not explain risk pre-

miums. In recent work, Haddad and Muir (2021) show that corporate credit is the most

financially-intermediated asset class, suggesting that consumption risk may not matter for

corporate bond returns. The tension between the two priors begs extensive empirical inves-

tigation into the ability of consumption risks in explaining corporate bond risk premiums,

which is the focus of our paper.

In this article, we study whether or not a one-factor model based on long-run consump-

tion risk explains variation in corporate bond risk premiums associated with a wide range

of bond characteristics for the period 1973-2019. Specifically, we construct 7 sets of portfo-

lios of corporate bonds sorted on credit spreads, credit rating, downside risk, idiosyncratic

volatility, long-term reversal, maturity, sensitivity to the intermediary factor of He, Kelly,

and Manela (2017) and use them as test assets. To measure long-run consumption risk,

we simply accumulate consumption growth up to 24 quarters and calculate the covariance

between portfolio returns and consumption growth.

Our one-factor model is motivated by the long-run risk model of Bansal and Yaron

(2004) and Malloy, Moskowitz, and Vissing-Jørgensen (2009). Under several simplifying

assumptions such as the unitary elasticity of intertemporal substitution (EIS), the model

leads us to use cumulative consumption growth as a risk factor. We apply the Generalized

Method of Moments (GMM) estimation of the model to the data, effectively running cross-

sectional regressions of average excess returns on the covariance between the factor and

excess returns. The long-run risk model allows us to interpret the slope coefficient of the

regression as a risk-aversion coefficient of households, and to evaluate how plausible the
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model estimate is.

In testing the model, we use wealthy households’ consumption from the Consumer Ex-

penditure Survey (CEX) data in addition to aggregate consumption from the National In-

come and Product Account (NIPA) data. Though these wealthy households do not neces-

sarily own corporate bonds directly, their consumption-savings choice is less likely to be

constrained and thus their marginal utility is more likely to be aligned with asset returns.

Therefore, with the CEX data, we can potentially measure consumption growth that is more

relevant in explaining asset returns than the aggregate consumption data which partly re-

flects non-discretionary consumption.

In the data, long-run consumption risk explains a significant fraction of corporate bond

risk premiums. When we use wealthy households’ cumulative 20-quarter consumption

growth as a risk factor, the cross-sectional R-squared is 0.80, while the risk-aversion coeffi-

cient is estimated at 15. This estimate is higher than the conventional level in an interval of

0.5 to 2, but lower than the estimates based on asset prices in the previous literature (e.g.,

Calvet and Czellar 2015). Notably, our estimate is similar to 10, the value used to calibrate

the long-run risk model. Since the confidence interval ranges from 7.1 to 25.9, our estimate

is statistically indistinguishable from 10.

Importantly, the estimated level of risk aversion is very similar to the one estimated from

equities. This similarity implies that from our model’s perspective, bonds and equities are

priced consistently. That is, the model “solves” the credit spread puzzle in the cross section

based on the empirically estimated parameters rather than on calibrated models.

In contrast, when we use aggregate consumption growth, the estimated risk-aversion

coefficient is higher: it ranges from above 250 to 50 as we expand the horizon to cumu-
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late the growth up to 24 quarters. At the horizon with the lowest risk-aversion estimate,

the cross-sectional R-squared is 0.64, lower than the estimates using wealthy households’

consumption.

These results suggest that, when corporate bond returns are low, consumption tends to

fall as well. Importantly, the reaction of consumption persists over the medium horizon, and

it is more pronounced for wealthy households’ consumption. Corporate bonds with higher

average returns, such as those with higher credit spreads, predict consumption more than

those with lower average returns do. From a forward-looking investor’s perspective, bonds

whose return co-move with future consumption growth are regarded as risky, and thus

command premiums to bear the risk. Consistent with the finding of Parker and Vissing-

Jørgensen (2009), wealthy households’ consumption is more sensitive to macroeconomic

shocks than aggregate consumption is, and therefore we need a lower value of risk aversion

to justify the cross-sectional variation in average corporate bond returns.

In order to compare the long-run consumption risk to other factors proposed in the lit-

erature, we regress the consumption-factor mimicking portfolio excess returns on the seven

factors of Fama and French (1993, 2015), the intermediary-factor mimicking portfolio of

He, Kelly, and Manela (2017), and the bond market, downside risk and credit risk factors of

Bai, Bali, and Wen (2019). We find that our factor earns significant alphas against the exist-

ing factors, suggesting that the long-run consumption risk is not subsumed by the existing

factors.

However, we find that the consumption risk factor does not explain corporate bond

portfolios sorted by the Roll illiquidity measure, bond’s age, issue size, as well as betas

with respect to shocks to the aggregate bond illiquidity measure proposed by Hu, Pan, and
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Wang (2013). This finding suggests that the consumption-based model is a powerful model

in explaining default risk and macroeconomic uncertainty priced in corporate bonds, but

not necessarily risk premiums arising from illiquidity, suggesting that the consumption-

based model is complementary to the intermediary-based model which better explains risk

premiums associated with liquidity.2

Our asset pricing tests address the concerns raised by Lewellen, Nagel, and Shanken

(2010) on empirical methods because we test a one-factor model using 7 bond character-

istics. Moreover, the performance of the long-run consumption-based model is robust to

various changes in the specification of the tests. The main results hold when we (i) use the

consumption of bondholders, (ii) use shocks to expectations for infinite-horizon consump-

tion growth rate implied by a VAR as a risk factor, (iii) estimate the long-run risk model with

various levels of elasticity of intertemporal substitution, (iv) allow asset returns to be not

log-normally distributed, (v) use international corporate bonds as alternative test assets,

and (vi) conduct asset pricing tests based on time-series regressions as in Fama and French

(1993) and Barillas and Shanken (2018).

In summary, we contribute to the literature by demonstrating that consumption risk

explains a cross-section of corporate bond risk premiums closely following the method es-

tablished by Malloy, Moskowitz, and Vissing-Jørgensen (2009). Our results also suggest

that it is possible to tame the factor zoo for corporate bonds, as the risk premium variation

associated with well-known characteristics such as credit rating, downside risk, volatility,

and long-term reversal can be well captured by a single macroeconomic factor.

2See Goldberg and Nozawa (2021) for the evidence of intermediary affecting bond liquidity and risk
premiums.
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Our paper relates to the literature on the cross-section of corporate bond returns. Geb-

hardt, Hvidkjaer, and Swaminathan (2005), Jostova et al. (2013), Chordia et al. (2017),

Choi and Kim (2018), Chung, Wang, and Wu (2019), Bali, Subrahmanyam, and Wen

(2021b,a), Bretscher et al. (2021), and Bali et al. (2021) document different predictors

of bond returns, while Kelly, Palhares, and Pruitt (2021) propose a reduced-form factor

model. In particular, the papers closest to ours are He, Kelly, and Manela (2017) and Bai,

Bali, and Wen (2019, 2021). These papers present different multi-factor models with dif-

ferent motivations to explain the cross-section of corporate bond returns. In contrast, our

model uses only one risk factor and offers a more parsimonious explanation.

There is another strand of literature which incorporates consumption shocks in struc-

tural models of debt to price corporate credit spreads (e.g., Chen, Collin-Dufresne, and

Goldstein 2008; Gourio 2013). In particular, Bhamra, Kuehn, and Strebulaev (2010b),

Chen (2010), Elkamhi and Salerno (2020), and Kuehn, Schreindorfer, and Schulz (2021)

calibrate the long-run risk models and show that the long-run risk is instrumental in ex-

plaining the aggregate credit spreads and equity risk premiums. Our study echoes the

importance of the long-run risk not only for credit spreads but also for bond risk premiums.

Our paper also contributes to the literature that investigates the link between slow-

moving components in consumption growth and a cross-section of asset returns, including

Aït-Sahalia, Parker, and Yogo (2004), Bansal, Dittmar, and Lundblad (2005), Parker and

Julliard (2005), Yogo (2006), Hansen, Heaton, and Li (2008), Malloy, Moskowitz, and

Vissing-Jørgensen (2009), Bansal, Kiku, and Yaron (2009), Elkamhi and Jo (2019), and

Bryzgalova and Julliard (2019). Ferson, Nallareddy, and Xie (2013) study the performance

of the long-run risk model with the NIPA consumption data and conclude that it does not
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explain the low-grade corporate bond index well. In contrast, we use different consumption

data and show that the model explains a broad cross-section of corporate bonds well.

Finally, this paper relates to the role of heterogeneous households and asset prices.

Mankiw and Zeldes (1991), Basak and Cuoco (1998), Guvenen (2009), Chien, Cole, and

Lustig (2016), Elkamhi and Jo (2019), Lettau, Ludvigson, and Ma (2019), and Toda and

Walsh (2019) show that accounting for heterogeneity in various agents’ consumption helps

explain risk premiums. In this paper, we directly measure wealthy households’ consump-

tion growth instead of using indirect proxies (such as capital share), and apply it to a wide

cross-section of corporate bonds.

The rest of the paper is organized as follows: in Section 2, we discuss data and the

empirical application of the long-run risk model; in Section 3, we present the empirical

results; in Section 4, we present several extensions of the empirical analysis; and in Section

5, we provide concluding remarks.

2 Data and methodology

2.1 Data

2.1.1 Consumption data

We use the consumption of wealthy households from the CEX data from March 1984 to

December 2019. We calculate consumption growth in the following way.3 First, expendi-

tures for nondurables and services from the CEX consumption categories are used to match

the definition of nondurables and services in NIPA. Second, to adjust the seasonality of

3The CEX is a nationwide household survey conducted by the U.S. Bureau of Labor Statistics (BLS), de-
signed to provide detailed data on spending, income, demographics, and asset holding information. The data
is publicly available at https://www.bls.gov/cex/.
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consumption, we regress the change in real per capita household consumption on a set of

seasonal dummies and use the residual as our consumption growth measure. Finally, for

each month, we compute the average consumption growth rates across wealthy households.

Wealthy households are defined as the top 30% of asset holders based on their beginning-

of-quarter holding of stocks, mutual funds, and bonds. The cutoffs for being in the top 30%

are defined by the calendar year. The CEX data does not allow us to separate the ownership

of bonds from other financial assets. This is not an issue for our purpose since we choose

those households not because they hold corporate bonds directly, but because we wish to

examine the consumption of households whose intertemporal consumption decision is less

likely to be constrained.

In the CEX data, a sample household is interviewed every three months over five times.

Also, the CEX surveys different sets of households every month by including new house-

holds and dropping old households who finish the last interview. Therefore, we observe

the quarterly consumption growth rates at a monthly frequency for the consumption of

wealthy households. Section I.G of the Internet Appendix provides more details on the CEX

data and sample selection criteria.

We compute aggregate consumption growth rates using seasonally-adjusted monthly

real personal consumption expenditures for nondurables and services from NIPA Table 2.8.3

from February 1959 to December 2019.4 Real per capita growth rates are calculated by

deflating nominal values using the 2012 dollars and subtracting the log population growth

rate, using a monthly population from NIPA Table 2.6.

4We also use the most recent samples of 2020 and find that our main results are robust to the extended
sample periods in which consumption level significantly drops due to the pandemic. This result is reported in
Table IA1 of the Internet Appendix.
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Table 1 presents the summary statistics for CEX/NIPA cumulative discounted S-quarter

consumption growth
∑S−1

s=0 δ
s(ct+s+1−ct+s) with S=1,. . ., 20, where the subjective discount

rate δ is set to 0.951/4. In Panel A, the standard deviation of quarterly consumption growth

(S = 1) of CEX wealthy households is 8.3%, while the standard deviation of the discounted

cumulative 20-quarter consumption growth is 8.8%. For the NIPA aggregate consumption

growth, the standard deviation is lower at 0.4% for quarterly growth but increases to 3.5%

for cumulative 20-quarter growth.

For a consumption-based model to work, the factor needs to be not only volatile but

also co-move with asset returns. To understand the sensitivity of consumption growth to

asset returns, we regress cumulative S-quarter consumption growth on quarterly returns on

the value-weighted bond market portfolios. Panel B of Table 1 reports the estimated slope

coefficients of the regressions. The sensitivity of wealthy households’ consumption growth

to bond returns is 0.26 when S = 1, which increases modestly to 0.38 when S = 20. The

sensitivity increases for a longer horizon because bond returns do not only co-move with

consumption growth, but also predict future consumption growth. In contrast, the sen-

sitivity of NIPA aggregate consumption growth is about zero when S = 1, and increases

to 0.13 when S = 20. Therefore, the long-run growth rate for wealthy households’ con-

sumption is three times as sensitive to aggregate shocks as the NIPA aggregate consumption

growth. As explained in the next section, this high sensitivity is the key to the performance

of a consumption-based model in explaining corporate bond risk premiums. Furthermore,

in Internet Appendix II, we study the behavior of wealthy households’ consumption over

the business cycle and find that wealthy households’ consumption shock is more sensitive

to macroeconomic uncertainty of Jurado, Ludvigson, and Ng (2015) than the aggregate
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consumption is.

2.1.2 Bond return data

For data on corporate bond returns, we mostly follow Nozawa (2017). We construct

the panel data of clean prices on corporate bonds from the Lehman Brothers Fixed Income

Database, the Mergent FISD/NAIC Database, TRACE, and DataStream, spanning returns

from February 1973 to December 2019. For the empirical test below, we use as long time-

series data as possible given the availability of bond returns and consumption data, and

thus the end of the sample period is determined by the shorter of the two. For example, in

our main results where we use a 20-quarter consumption growth rate as a risk factor, our

return sample ends in March 2015 which is determined by the availability of consumption

data. When there are overlaps among the four databases, we prioritize them in the fol-

lowing order: the Lehman Brothers Fixed Income Database, TRACE, Mergent FISD/NAIC,

and DataStream. Detailed descriptions of these databases as well as summary statistics of

monthly returns are provided in the Internet Appendix I.

We remove bonds with floating rates and with option features other than callable bonds.

Furthermore, we apply two filters to remove the observations that are likely to be subject

to erroneous recording. First, we remove the price observations that are below 5 dollars or

above 1,000 dollars per 100 dollar face value. Second, we remove bonds maturing in less

than a year.

Based on clean prices and accrued interest in the data, we calculate a monthly return
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on a corporate bond in month t as

Rt =
Pt + AIt + Coupont

Pt−1 + AIt−1
− 1, (1)

where Pt is month-t clean price, AIt is accrued interest for the bond at the end of month t,

and Coupont is coupon paid during month t.

Using this panel data of corporate bond returns, we form 7 sets of portfolios. First,

Nozawa (2017) shows that credit spreads are a strong predictor of the cross-section of

corporate bond returns. Based on his finding, He, Kelly, and Manela (2017) test their

intermediary asset pricing model using 10 portfolios sorted on credit spreads. Thus, every

month, we form 10 value-weighted portfolios based on the average credit spreads between

months t − 12 and t − 1. We put a one-month lag between the period where we observe

the signal (the average of credit spreads) and the portfolio formation month to ensure that

measurement errors in bond prices do not drive return predictability.

Next, we form portfolios sorted on credit risk, downside risk, maturity, idiosyncratic

volatility, and long-term reversals. Bai, Bali, and Wen (2019) sort bonds based on credit

rating and downside risk (measured as the 5% VaR for bond returns over the past 36-month

horizon5) and find that these characteristics are a strong predictor of corporate bond re-

turns. Furthermore, Gebhardt, Hvidkjaer, and Swaminathan (2005) use the bond’s maturity

as a predictor variable, while Chung, Wang, and Wu (2019) use idiosyncratic volatility of

bond returns.6 More recently, Bali, Subrahmanyam, and Wen (2021a) propose long-term

5We impose the minimum number of observations at 24 months.
6To compute idiosyncratic volatility, we run regressions of bond returns on the 5 factors of Fama and

French (2015) over the 36-month rolling window (with the minimum number of observations of 24 months),
and calculate the standard deviation of the regression residuals.
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reversals (measured by negative of cumulative 3-year returns from t − 48 to t − 12) as a

corporate bond risk factor. Thus, every month, we sort bonds into quintiles based on these

characteristics. Bai, Bali, and Wen (2019) also show that liquidity and short-term rever-

sals predict corporate bond returns. Since liquidity is likely to be a different source of risk

premiums than default-related factors that we focus on, we study it separately in Section

4.4.7

Furthermore, we examine whether the long-run risk model can price the return spreads

created by the intermediary asset pricing model of He, Kelly, and Manela (2017). To this

end, we estimate corporate bond betas against shocks to the intermediary’s capital on the

rolling 12-month windows.8 We then sort bonds every month into 5 value-weighted port-

folios based on the pre-formation betas.

To summarize, we have 7 sets of portfolios sorted on credit spreads, credit rating, down-

side risk, idiosyncratic volatility, intermediary factor-betas, long-term reversal, and matu-

rity, starting around 1973 and ending in December 2019.9 In the empirical analysis, we

use quarterly returns at the monthly frequency obtained by cumulating monthly portfolio

returns.

7We do not use short-term reversal, as Bai, Bali, and Wen (2019) show that it is not a source of systemic
risk and likely to be driven by the market microstructure noise in the data.

8We also estimate the betas over the 36-month rolling windows, but this method does not lead to a signif-
icant difference in average returns between the first and last quintiles, and thus we use the portfolios based
on 12-month rolling window betas as our main results.

9The exact starting month varies across portfolios. The credit rating and maturity portfolios start in Febru-
ary 1973, the credit spread portfolios start in April 1973, intermediary factor-beta portfolios start in February
1974, downside risk and idiosyncratic volatility portfolios start in February 1975, and long-term reversal
portfolios start in February 1977.
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2.2 Methodology

We followMalloy, Moskowitz, and Vissing-Jørgensen (2009) in estimating the consumption-

based model. In the model, an agent in the economy has recursive preferences of a form,

Vt =

[
(1− δ)C

1− 1
ρ

t + δ
[
Et(V

1−γ
t+1 )

] 1− 1
ρ

1−γ

] 1

1− 1
ρ

, (2)

where Ct is consumption in month t, ρ is the elasticity of intertemporal substitution, γ is a

risk-aversion coefficient, and δ is a subjective discount rate.

We assume that log consumption growth ct+1− ct follows a stationary first-order vector-

auto regression (VAR),

ct+1 − ct = µc + Ucxt + η0wt+1, (3)

xt+1 = Gxt +Hwt+1. (4)

where ct = logCt, xt is a vector of a state variable that predicts consumption growth, wt

is a vector of i.i.d. Normal random variables with mean zero and covariance matrix I. Eq.

(3) and (4) imply that log consumption growth can be expressed as a stationary moving-

average process of the form,

ct+1 − ct = µc +
∞∑
s=0

ηswt+1−s ≡ µc + η(L)wt+1. (5)

FollowingHansen, Heaton, and Li (2008) andMalloy, Moskowitz, and Vissing-Jørgensen

(2009), we focus on a special case in which EIS is one in the main results. This assumption

allows us to express the stochastic discount factor (SDF) derived from the preferences in (2)

as a log-linear function of state variables, and considerably simplifies it. We then present
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results when EIS differs from one as a robustness check later in Section 3.3.

Under the assumption EIS=1, the log stochastic discount factor is,

st+1 = log δ − [µc + η(L)wt+1] + (1− γ)η(δ)wt+1 −
1

2
(1− γ)2η(δ)2, (6)

= log δ − [ct+1 − ct] + (1− γ)

[
(Et+1 − Et)

∞∑
s=0

δs(ct+1+s − ct+s)

]
− 1

2
(1− γ)2η(δ)2,

(7)

≈ log δ + (1− γ)

[
(Et+1 − Et)

∞∑
s=0

δs(ct+1+s − ct+s)

]
− 1

2
(1− γ)2η(δ)2. (8)

In the last line, we drop the contemporaneous consumption growth ct+1 − ct because it

is known to play a minimal role in explaining asset returns (e.g. Malloy, Moskowitz, and

Vissing-Jørgensen (2009)). The second term in the last line is the source of a shock to the

stochastic discount factor: it captures the shock to investors’ expectations for the future

consumption growth rate. With the Epstein-Zin preferences, such a shock affects investors’

marginal utility of consumption at t+ 1, and thus should be reflected in asset prices.

Despite its name, the long-run risk model applies to assets with any maturity as long as

their returns co-move with expected consumption growth. Consider a bond with 2 years to

maturity: this bond can command large premiums if its one-quarter return co-moves well

with long-run consumption growth. Thus, even though the bond matures way before “long

run”, the model can generate risk premiums for short-term assets whose returns predict

consumption growth.

With a valid stochastic discount factor, the Euler equation E[St+1Ri,t+1] = 1 must hold

when the agent’s savings-consumption decision is unconstrained. In the main analysis,

we make an additional assumption that a return Ri,t+1 is lognormally distributed, but we

relax this assumption later in Section 4. Under the lognormality assumption, we derive the
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unconditional Euler equation for a log return on asset i in excess of the risk-free rate of

return,

E[ri,t+1 − rf,t] +
σ2(ri,t+1)

2
− σ2(rf,t)

2
= −cov(st+1, ri,t+1 − rf,t). (9)

We plug the log stochastic discount factor in (8) into (9) and obtain,

E[ri,t+1 − rf,t] +
σ2(ri,t+1)

2
− σ2(rf,t)

2

≈ (γ − 1)cov

(
(Et+1 − Et)

∞∑
s=0

δs(ct+1+s − ct+s), ri,t+1 − rf,t

)
, (10)

= (γ − 1)cov

(
∞∑
s=0

δs(ct+1+s − ct+s), ri,t+1 − rf,t

)

− (γ − 1)cov

(
Et

∞∑
s=0

δs(ct+1+s − ct+s), ri,t+1 − rf,t

)
. (11)

where ri,t+1 is a log return on an asset i, and rf,t is the risk-free rate. In the last line, we use

the law of iterated expectations to remove Et+1.

Malloy, Moskowitz, and Vissing-Jørgensen (2009) test a simplified version of the Euler

equation in (11) by dropping the second term that captures conditional expectation for

consumption growth. In this case, expected log excess returns on an asset are given by

their covariance with unconditional long-run consumption growth:

E[ri,t+1 − rf,t] +
σ2(ri,t+1)

2
− σ2(rf,t)

2

≈ (γ − 1)cov

(
∞∑
s=0

δs(ct+1+s − ct+s), ri,t+1 − rf,t

)
. (12)

Eq. (12) implies that, in order to obtain a low risk-aversion coefficient, we need a large

covariance between asset returns and long-run consumption growth.
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Malloy, Moskowitz, and Vissing-Jørgensen (2009) truncate the summation over the infi-

nite horizon in (12) up to S quarters, replacing
∑∞

s=0 δ
s(ct+1+s−ct+s) with

∑S−1
s=0 δ

s(ct+1+s−

ct+s). Though this procedure involves an approximation, it has the advantage of trans-

parency. If we test (11), we have to specify a VAR by taking a stand on the set of state

variables that predict consumption growth and on their dynamics. In such cases, the em-

pirical results inevitably depend on a VAR specification and will be affected by estimation

errors in a VAR model. The simplified model in (12) requires no VAR estimates since it only

depends on the covariance between consumption growth and asset returns in the data.

However, the simplified model has a limitation on how far we can extend the horizon S due

to the limited sample size. To strike a balance between simplicity and accuracy, we first

test the simplified unconditional model in (12) with finite S and then present the condi-

tional model in (11) that captures shocks to expected consumption growth over the infinite

horizon.

When testing the Euler equation in (11) using CEX consumption data, we use the aver-

age of log consumption growth across wealthy households, such that ct+1−ct = 1
Ht

∑
h(ch,t+1−

ch,t). This procedure implies that we start from the Euler equation for each household, and

then aggregate it across households without using the representative agent framework.

Wealthy households typically do not own corporate bonds directly, but hold them through

mutual funds (Bai, Bali, and Wen (2021)). This does not automatically invalidate the link

between their consumption growth and bond risk premiums. In classic portfolio theories,

optimal holdings can be described as a combination of several portfolios (such as a tan-

gency portfolio and a risk-free asset) under certain conditions,10 which is called “mutual

10See, for example, Ingersoll (1987).
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fund” separation theorems. If these funds are mean-variance efficient, then their returns

and owners’ consumption can serve as a valid risk factor irrespective of whether the house-

holds own bonds directly or through mutual funds. Importantly, when we examine the

consumption risk of bonds, we do not assume that wealthy households’ consumption de-

cision “moves” corporate bond prices through fire sales and purchases. Rather, we view

unobservable macroeconomic shocks as affecting both households’ consumption decisions

and bond returns simultaneously, and we use the resulting correlation as a measure of risk.

3 Empirical results

3.1 Measuring long-run consumption risk

Before estimating the Euler equation in (12), we dissect the long-run consumption risk

of corporate bond portfolios using the covariance between long-run consumption growth

and quarterly returns on bond portfolios. To understand why the model works, we compare

long-run risk with short-run risk,

cov

(
S−1∑
s=0

δs(ct+s+1 − ct+s), rei,t+1

)
︸ ︷︷ ︸

Long run

= cov
(
ct+1 − ct, rei,t+1

)︸ ︷︷ ︸
Short run

+cov

(
S−1∑
s=1

δs(ct+s+1 − ct+s), rei,t+1

)
.

(13)

where rei,t+1 = ri,t+1 − rf,t.

The short-run risk corresponds to contemporaneous covariance between consumption

growth and returns, which would be the only source of priced risk for a model with power

utility households (e.g. Lucas (1978)). The difference between the long-run and short-run

risks comes from the predictability of future consumption growth with bond returns. If

a higher return in quarter t + 1 predicts higher consumption growth afterward, then this
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long-run risk is greater than the short-run risk.11

Table 2 presents average excess returns, short-run covariance ˆcov(ct+1 − ct, ri,t+1 − rf,t),

and long-run covariance, measured by the discounted 20-quarter cumulative consumption

growth of CEX wealthy households ˆcov(
∑19

s=0 δ
s(ct+1+s − ct+s), ri,t+1 − rft ) for 40 portfolios

we use as test assets. For all sorting variables, the long-run risk model generates a similar

pattern in covariance as that in average excess returns. Specifically, the covariance with 20-

quarter consumption growth increases nearly monotonically from the first quintile/decile

to the last quintile/decile for all subsets of portfolios. The average excess returns for those

portfolios increase similarly, suggesting that the long-run risk model not only generates

large risk exposure, but also the pattern in risk exposure which matches that in average

excess returns. Moreover, the difference in long-run covariance between the last and the

first quintile/decile is larger than that in short-run covariance, underscoring the importance

of long-run consumption risk.

Panel A of Figure 1 visualizes the information in Table 2, plotting average excess returns

on the y-axis and covariance on the x-axis. The covariance is greater when we use wealthy

households’ consumption growth over the long horizon than short-run consumption growth,

and thus the fitted line flattens. This implies that the return spread between the last and

first quintile/decile predicts their consumption growth. Panel B of Figure 1 shows the same

plot but using NIPA aggregate consumption growth over 1 and 8 quarters instead of CEX

wealthy households’ consumption. We treat 8 quarters as a long horizon here because,

as we show below, extending the horizon further does not flatten the fitted line for the

11In the Internet Appendix III, we calibrate the long-run risk model of Bhamra, Kuehn, and Strebulaev
(2010b) and show that long-run consumption risk is indeed an important driver of expected returns on cor-
porate bonds in addition to credit spreads.
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aggregate consumption growth. Even though using a long-run growth rate helps lower the

slope, the fitted line is still much steeper than Panel A, which suggests that we need a higher

risk-aversion coefficient to rationalize the observed variation in average returns if we use

the aggregate consumption growth rate.

In Panel A, we use a shorter sample from 1984 to 2019 due to the availability of the

CEX data, starting when the Treasury yield hit the post-war record high and ending when

the yield is near zero. As a result, for most portfolios, the average returns in excess of T-bill

rates are higher in Panel A than in Panel B, which starts from 1973. The implication of the

unique sample period for the CEX data will be discussed in the next section.

3.2 Fit of the long-run risk model

3.2.1 Estimation using all test assets

In this section, we estimate the parameters of the long-run risk model in (12), and

formally evaluate the performance of the model in explaining the cross-section of corporate

bond premiums. Following Malloy, Moskowitz, and Vissing-Jørgensen (2009), we use the

GMM framework to simultaneously estimate covariance between long-run consumption

growth and asset returns together with model parameters.12 For the test assets, we use 40

corporate bond portfolios sorted on 7 characteristics described in Table 2. Given the critique

12The GMM moment conditions are

E

[
ri,t+1 − rf,t +

σ2(ri,t+1)
2 − σ2(rf,t)

2 − ζ − (γ − 1)εc,t→t+S (ri,t+1 − rf,t)
εc,t→t+S

]
= 0, (14)

where εc,t→t+S =
∑S−1
s=0 δ

s(ct+1+s − ct+s) − µ∑S−1
s=0 δ

s(ct+1+s−ct+s)
, θ =

(
ζ γ µ∑S−1

s=0 δ
s(ct+1+s−ct+s)

)
are

the parameters to be estimated. Since there are 41 moment conditions in total and three free parameters, the
GMM procedure finds the best parameters to minimize the sum of squared moments:

min
θ
gT (θ)′WgT (θ) (15)
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of Lewellen, Nagel, and Shanken (2010), it is important to include multiple test assets in

the test to break a tight factor structure in returns on the test assets; if we include only

one set of portfolios based on a univariate sort, then the resulting cross-sectional fit can be

mechanical.

Effectively, we run cross-sectional regressions,

Ê[ri,t+1 − rf,t] +
σ̂2(ri,t+1)

2
− σ̂2(rf,t)

2
= ζ + (γ − 1)σ̂i,c + ei, (17)

σ̂i,c = côv

(
S−1∑
s=0

δs(ct+1+s − ct+s), ri,t+1 − rf,t

)
, (18)

where ri,t+1 is a log return on an asset i, and rf,t is the log 30-day T-bill rate. To evaluate

the fit of the model, we define the cross-sectional R-squared by R̄2 = 1 − V arc(Ê[Rei ]−R̂ei)
V arc(Ê[Rei ])

,

where Ê[Re
i ] = Ê[ri,t+1−rf,t]+ σ̂2(ri,t+1)

2
− σ̂2(rf,t)

2
, and R̂e

i is the fitted value. To calculate the

standard errors and 95% confidence intervals for estimates and R̄2, we conduct bootstrap

simulations by randomly drawing months with replacement 5,000 times, which accounts

for the cross-sectional correlation in asset returns.13

Table 3 presents the main results of the article, including the estimated coefficients in

(17) and cross-sectional R̄2 statistics with different values of S. In Panel A, the factors

where gT (θ) is the sample counterpart of the moments in (14), andW is the weighting matrix defined by,

W =

(
I40 0
0 H

)
, (16)

where we setH to be the number of test assets, which is sufficiently large to ensure that the mean of long-run
consumption growth rate is well measured.

13The stationary bootstrap procedure introduced by Politis and Romano (1994) is used with the random
block lengths drawn from a geometric distribution to ensure the stationarity of the resulting time-series.
Specifically, we resample blocks of asset returns, risk-free rate, and the long-run risk measures randomly with
replacement until the bootstrap sample size is equal to the number of real data observations. Then, we obtain
estimates and R̄2 by re-running the regression using the bootstrap samples. We repeat this procedure 5,000
times and construct the bootstrap distribution of estimates and R̄2. To choose the expected block length, we
follow Politis and White (2004) and set the optimal expected block length.
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are based on CEX wealthy households’ consumption, while in Panel B, they are from NIPA

aggregate consumption. To evaluate the importance of long-run risk, we show the estimates

in (17) with different values of S in the third to last columns in Panel A Table 3. Starting

from the results using the consumption of wealthy households in CEX, we find that the

risk-aversion estimates are lower at the medium horizon than for the short horizon. For

example, when S = 1 quarter, γ is estimated at 24, and when S = 20 quarters, the estimate

yields a reasonable level of risk aversion of γ =15. These results suggest that bond returns

predict the wealthy households’ consumption growth better over the medium term, which

leads to a greater quantity of risk. As a result, the estimated risk aversion becomes lower

as we increase S up to 20 quarters. When S = 20, the 95% bootstrapped confidence

interval ranges from 7.1 to 25.9. Therefore, the risk-aversion coefficient is not statistically

distinguishable from 10 – a commonly-used value in the long-run risk model (e.g. Bansal

and Yaron (2004)) – but they are significantly different from zero, supporting the validity

of the estimate.14

With regard to the explanatory power of the model, when S = 1 quarter, the cross-

sectional R̄2 using wealthy households’ consumption growth is 0.33. However, when S =

20 quarters, the cross-sectional R̄2 increases to 0.80, which is substantial given that we use

a one-factor model on 7 sets of portfolios, and higher than the value reported in Malloy,

14Although the estimated level of risk-aversion γ =15 is more reasonable than those provided in the liter-
ature (as summarized in Table IA2 in the Internet Appendix), it is still higher than the conventional level in
an interval of 0.5 to 2. To achieve even lower values, we need additional features in the model. For exam-
ple, Collin-Dufresne, Johannes, and Lochstoer (2016) show that an economy where an agent faces unknown
model parameters and has to learn them using observed states generates high risk premiums for risky assets.
Hansen and Miao (2022) extend the model of Hansen and Sargent (2011) where an agent is averse to model
ambiguity and show that this additional uncertainty reduces investor demand for risky assets. These addi-
tional model features may help reduce the risk aversion in the paper even further. However, we do not take
this path to emphasize the simplicity and transparency of the empirical analysis.
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Moskowitz, and Vissing-Jørgensen (2009).15 The cross-sectional R̄2 does not monotonically

increase as S increases, owing to the relatively large measurement errors in the survey-

based consumption growth rate. In Section 3.3, we address potential concerns arising from

the noise in the data by confirming that similar results hold with S =∞ using a VAR.

In contrast, if we estimate amodel with NIPA aggregate consumption with S = 1 quarter,

the estimated γ is 255, which is implausibly high but consistent with those found in the

literature using contemporaneous aggregate consumption growth (e.g., 365 in Nagel and

Singleton (2011)). Similar to the results using the CEX data, as S increases, the estimated

risk-aversion parameter decreases up to a certain level of S. When S = 2 quarters, the

estimated γ goes down to 131 and reaches the bottom when S = 8 and the estimated γ

is 50. The cross-sectional R̄2 statistics remain similar, as it is 0.67 when S = 1 and 0.64

when S = 8, suggesting that the model using the NIPA aggregate consumption fits the data

reasonably well, but not as good as wealthy households’ consumption does.

The better performance for thewealthy households’ consumption risk than the aggregate

consumption partly reflects a variety of measurement issues for the aggregate data raised

in the previous work (e.g., Aït-Sahalia, Parker, and Yogo (2004), Savov (2011), Kroencke

(2017)). Furthermore, aggregate consumptionmay not capture well discretionary consumption-

savings decisions that are tied to asset returns.16 As a result, the consumption of wealthy

households lines up better with observed asset returns than the aggregate consumption

does.17

15Malloy, Moskowitz, and Vissing-Jørgensen (2009) report the cross-sectional R̄2 of 0.65 for the 25 size
and book-to-market sorted portfolios using 24-quarter shareholder consumption growth, and 0.52 using 24-
quarter top shareholder consumption growth (see their Table II).

16Furthermore, Kroencke (2017) points out that NIPA statisticians filter observable consumption, and this
leads to seemingly too smoothed NIPA consumption measures.

17Kaplan and Violante (2014) show that some wealthy households behave as if they were constrained when
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The intercept of the cross-sectional regression for wealthy households’ 20-quarter con-

sumption growth is 0.74% per quarter, suggesting that on average corporate bonds have

returns that are too high during the sample period, while the intercept for the NIPA con-

sumption growth is insignificant at 0.30%. This mispricing of the risk-free asset can be

explained by the strong downward trend in Treasury yields over the sample period for the

CEX data.

To account for the impact of falling Treasury yields, we repeat the exercise using corpo-

rate bond returns in excess of matched Treasury bonds with the same cash flows. To this

end, we create synthetic Treasury securities with the same coupon andmaturity as each cor-

porate bond in the sample,18 and use their returns as the risk-free rate of returns in (17).

Since corporate and matching Treasury bonds have the same interest rate risk, this excess

return is in principle not affected by shifts in the Treasury yield curve. Panel C of Table 3

reports the estimates for the Euler equation using CEX wealthy household consumption as

a risk factor. We find that the estimated risk-aversion coefficient and the cross-sectional R̄2

remain nearly unchanged from our main results in Panel A. For example, for S = 20, risk

aversion is estimated at 14 with R̄2 of 0.73. However, the intercept falls to -0.11%, which is

statistically indistinguishable from zero. Therefore, once we account for changing Treasury

yields, the wealthy households’ consumption risk can price both corporate bond portfolios

and risk-free assets simultaneously.

their assets are in illiquid assets such as real estate and retirement accounts. We argue that wealthy households
in our setup are unlikely to be constrained as we measure assets using stocks, mutual funds, and bonds rather
than real estate. Furthermore, we focus on the top 30% wealthy households to avoid constrained households.

18We use the fitted Treasury yield curve of Gurkaynak, Sack, and Wright (2006) available on the Federal
Reserve’s website and discount corporate bond cash flows using Treasury zero-coupon rates to obtain a price
of matching Treasury bonds. Specifically, we use the parameter of the Svensson (1994) model available in
the data set, and calculate the zero-coupon rate for the exact payment date for each coupon and principal for
each corporate bond.
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The better performance using wealthy households’ consumption is not driven by the

difference in data quality between NIPA and CEX. In Panel D of Table 3, we repeat the

GMM estimation using CEX consumption using all households (rather than the top 30%

asset holders). We find that when S = 20, the estimated risk-aversion coefficient is 64,

higher than the estimate based on the NIPA aggregate consumption (50 with S = 8), while

the cross-sectional R̄2 is 0.31. Thus, the success of the consumption-based model is not due

to the usage of the CEX data per se. Rather, it is driven by the fact that we focus on wealthy

households’ consumption instead of aggregate consumption. In Internet Appendix Tables

IA3 and IA4, we show that our results are not sensitive to the particular choice of the cutoff

(30%) to define wealthy households.

The evidence above suggests that wealthy households’ consumption prices the cross-

section of corporate bonds well. These results are consistent with the model’s performance

on equity, as shown in Malloy, Moskowitz, and Vissing-Jørgensen (2009). To verify, in Table

4, we estimate the model using Fama-French 25 portfolios as test assets over the sample

period up to 2019, extending the sample in the original study by 15 years.19 With the quar-

terly consumption growth, the risk-aversion coefficients estimated from equities are 18 (CEX

wealthy) and 166 (NIPA aggregate), lower than the corresponding values estimated from

bonds (24 and 255). However, when we use 20-quarter wealthy households’ consumption

growth, the risk-aversion coefficient inferred from equity is 17, which is remarkably similar

19As in Malloy, Moskowitz, and Vissing-Jørgensen (2009), we exploit the entire time-series of returns start-
ing from July 1926 to precisely estimate average returns. In order to obtain the bootstrap sample size that
is equal to the number of real data observations for both the left-hand side (LHS) sample and the right-hand
side (RHS) sample for this case, bootstrapping is performed in the following way. First, we place two sets
of the data separately to be re-sampled: (1) time-period where only LHS is available and (2) time-period
where both LHS and RHS are available. From each bootstrap sample, we attach the re-sampled first data set
to the corresponding re-sampled second data set for each asset to obtain a bootstrap sample for the LHS. A
bootstrap sample for the RHS is obtained directly from the re-sampled second data set.
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to 15, the value estimated from corporate bonds. Thus, the corporate bond risk premiums

appear too high relative to the equity counterpart if we use the short-term consumption

growth as a risk factor. This tension, known as the credit spread puzzle, is often attributed

to features specific to bond cash flows such as idiosyncratic tail risks (Culp, Nozawa, and

Veronesi (2018)). We resolve the tension by showing that such risks are associated with

the long-term consumption growth of wealthy households; once a left-tail event realizes,

it disproportionately affects wealthy households’ consumption in the future. Once we ac-

count for this link, we can build a one-factor model with a risk-aversion parameter that is

consistent with both equity and bond risk premiums.

Though our focus is on wealthy households’ consumption, we also attempt to estimate

bondholders’ consumption, motivated by the idea that the SDF is a function of the con-

sumption of market participants. Due to the lack of data in CEX on whether households

own bonds or not, we use a sample of the Survey of Consumer Finances which indicates

bondholders and identify key characteristics that predict corporate bond ownership by esti-

mating a Probit model. The details on the Probit analysis that links households’ character-

istics and bond ownership are provided in Internet Appendix IV. We then use the estimated

coefficients to calculate the probability of bond ownership in the CEX sample, and create

the consumption growth of households that have at least a 10% chance of holding corporate

bonds. We call this series bondholders’ consumption for short.

Panel E of Table 3 reports the GMM estimates using bondholders’ consumption. We find

that the results are fairly similar to our main results in Panel A. For example, when S = 20,

the estimated risk-aversion coefficient is 14.9 with the cross-sectional R̄2 of 0.80.20

20For further robustness, in Internet Appendix V, we show that the results in Panel A are robust when we
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3.2.2 Tests on the consistency of pricing performance across test assets

In this section, we examine if the long-run risk model prices each set of portfolios con-

sistently with each other. He, Kelly, and Manela (2017) emphasize that their intermediary

leverage factor produces the estimated price of risk that is consistent across various as-

set classes. To examine the performance of the long-run risk model from this perspective,

we separately estimate (17) using 7 sub-samples of portfolios sorted on credit rating, credit

spreads, downside risk, idiosyncratic volatility, intermediary betas, long-term reversals, and

maturity. Since each sub-sample has only 5 or 10 portfolios, the risk-aversion parameter

will not be as precisely estimated as before. Thus, to evaluate the consistency of estimated

γ, we also report the pricing performance in terms of R̄2 and RMSE
RMSR

for each portfolio group

by imposing the same risk aversion estimated by all portfolios.

Panel A of Table 5 shows that risk-aversion estimates are consistent across assets for

wealthy households’ 20-quarter consumption growth. Once we estimate the Euler equation

separately, the estimated γ is 17 for credit spread portfolios, 17 for downside risk portfolios,

35 for maturity portfolios, 14 for credit rating portfolios, 14 for intermediary beta portfolios,

15 for idiosyncratic volatility portfolios, and 13 for long-term reversal portfolios. Table 5

also compares R̄2 calculated with the risk aversion specific to each portfolio group with

R̄2 with the risk aversion fixed at the value using all portfolios (i.e. γ = 15). These R̄2

are similar to each other, showing that allowing the risk-aversion parameter to vary across

subsamples does not affect the fit of the model. The cross-sectional R̄2 for the intermediary

beta portfolios is low at 0.24, but we will later show that the fit of the model improves

estimate the regression in (17) in reverse, switching the left-hand-side variable and right-hand-side variable.
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significantly if we account for infinite-horizon consumption growth.

Figure 2 displays point estimates of risk aversion from each portfolio group and the one

from all portfolio groups, as well as their 95% confidence intervals using the consumption

of wealthy households. The two standard error bounds for these estimates include risk

aversion of 15 from the main results in Table 3. Therefore, we cannot reject the hypothesis

that the coefficient of risk aversion is equal to 15 for each portfolio group. This shows that

although the measurement errors for sub-samples are large, the estimated risk aversion is

consistent across different test assets.21

Figures 3 and 4 show the fit of the model graphically for CEX wealthy households’ con-

sumption and NIPA aggregate consumption, respectively. We plot the model-implied predic-

tion for expected returns and the average excess returns in the data, using both full samples

and 7 sub-samples of bond portfolios. In the figures, the observations lie close to the 45-

degree line for most sub-portfolios. A notable exception is the fifth quintile of maturity

and intermediary-beta-sorted portfolios which has higher average excess returns than the

model’s prediction. Because of these somewhat anomalous portfolios, the cross-sectional R̄2

using these sets of portfolios is lower than other portfolios. Still, overall results support the

performance of the long-run risk model which generates consistent γ with similar magni-

tudes across different test assets using either wealthy households’ consumption or aggregate

consumption. Because risk-aversion estimates using wealthy households’ consumption are

more in line with theories, we focus on the consumption risk of wealthy households for the

following analyses.

21In the Internet Appendix VI, we repeat the exercise using betas (rather than covariance) for the long-run
consumption growth rate and show that the fit of the model and estimated price of risk are consistent with
the main results.
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3.3 More general models using a VAR

In the previous section, we use a 20-quarter consumption growth for a risk factor as

an approximation to the long-run risk model which in principle depends on shocks to

infinite-horizon consumption expectation. Though the performance of the approximate

model is encouraging, we need to ensure that the results are not driven by the simplify-

ing assumption. Thus, in this section, we estimate the conditional model in (11), which

requires the estimates of the conditional expectation for long-run consumption growth,

Et
∑∞

s=0 δ
s(ct+1+s − ct+s). To this end, we choose a vector of state variables, and estimate

the VAR in (3) and (4). To save space, most of the estimation results are reported in the

Internet Appendix VII.

To begin, we select a candidate set of state variables that predict consumption growth.

To avoid an arbitrary choice of a few state variables, we rely on a large set of 160 macro

and financial variables listed in Table IA5 in the Internet Appendix.22 Then, we apply the

principal component analysis as in Ludvigson and Ng (2007, 2009) and Roussanov (2014)

and extract ten factors, F1, . . . , F10. In total, we consider ten principal components with

the maximum VAR lags of two as a candidate set of state variables. Next, based on these

candidate variables, we find a subset that minimizes the Akaike Information Criterion (AIC)

for consumption predictive regression in (3).

Panel A of Table 6 presents the estimated coefficients of VARs in (3) and (4). We find

that the set of state variables we choose predicts consumption growth well. F2, F6, and

F8, and their one-month lags predict three months ahead of consumption growth with an

22128 variables are from McCracken and Ng (2016).
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adjusted R-squared of 0.027. We emphasize that we do not specify VARs based on how

shocks to state variables covary with bond returns. Instead, the state variables are selected

based only on how well they predict consumption growth.23

With this VAR estimate, we follow Hansen et al. (2007) and Hansen, Heaton, and Li

(2008) and derive a more general form of the log stochastic discount factor for the long-

run risk model with Epstein-Zin utility which accounts for the conditional expectation of

consumption growth and does not assume EIS = 1. When EIS 6= 1, the factor is no longer

a linear function of state variables and thus we need to log-linearize the function with

approximation. Specifically, without constant terms and a contemporaneous consumption

growth (ct+1 − ct) term that does not materially affect our result, the first-order expansion

of the logarithm of the stochastic discount factor yields,

st+1 ≈ (1− γ)λ(δ)wt+1 +

(
1

ρ
− 1

)(
1

2
w′t+1Θ0wt+1 + w′t+1Θ1xt + θ1xt + θ2wt+1

)
, (19)

where λ(δ)wt+1 = (Et+1 −Et)
∑∞

s=0 δ
s(ct+1+s − ct+s), and Θ0, Θ0, θ1, θ2 are functions of the

parameters for the dynamics of state variables described in the Internet Appendix VII. The

first term in (19) represents the log SDF when an EIS parameter ρ = 1, while the second

term arises when EIS 6= 1. When EIS is one, the model does not require any restrictions

on the shock structure to identify wt+1. For this reason, we first focus our VAR analysis on

the case for EIS = 1. We then conduct the analysis for the general case where EIS 6= 1 by

identifying wt+1.

23To support this claim, we show in Panel B of Table 6 that the selected factors generally do not exhibit
the same predictive power for asset returns as for consumption growth. This implies that the quantity of risk
using this VAR approach will not be mechanically led by a high predictive power of the selected factors for
bond returns.
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With the assumption of EIS = 1, we calculate shocks to the long-run expectation,

(Et+1 − Et)
∞∑
s=0

δs(ct+1+s − ct+s) = εc,t+1 + δUc(I − δG)−1εx,t+1, (20)

where εc,t+1 = η0wt+1 and εx,t+1 = Hwt+1. We use regression residuals of (3) and (4) for

εc,t+1 and εx,t+1. The standard deviation of VAR-based shocks to long-run consumption is

8.19% per quarter, which is slightly lower than the standard deviation of unconditional

20-quarter consumption growth (8.82% per quarter).24

Armed with the estimated shocks to expectation for the long-run consumption growth in

(20), we estimate the conditional model in (11) using GMM. Table 7 reports the estimates.

Using all 40 portfolios as test assets, we find that the estimated risk-aversion parameter γ is

20. Although this point estimate is slightly higher than the estimate for the unconditional

model of 15, a coefficient of 10 is well within two standard errors. The cross-sectional R̄2

is 0.83, even higher than 0.80 using the discounted 20-quarter consumption growth as a

risk factor.

The analysis of 7 sub-samples also yields findings similar to our main results in Table

5. The risk-aversion estimates are consistent across portfolio groups with the two stan-

dard error bounds that include the full sample risk-aversion estimate of 20. Moreover, the

cross-sectional R̄2 statistics are sizable, ranging from 0.64 to 0.99, except for maturity port-

folios. Importantly, the model explains 90% of variations in average returns associated with

intermediary factor betas.

Next, we allow EIS to be different from one and estimate the second term of the log SDF

24Table IA6 presents the summary statistics of shocks to the expectation for long-run consumption growth
estimated using the VAR.
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in (19). To this end, we impose a structure on the shock vector and estimate parameters

in the second term. The Internet Appendix VII details terms in (19) and describes how

we structurally identify the shock vector wt+1. Table 8 presents the GMM cross-sectional

test results with different values of EIS from 0.3 to 2.0. For an EIS of 1.5, which is used

in Bansal and Yaron (2004), estimated γ is 21, very close to γ = 20 when EIS = 1, and

the cross-sectional R̄2 of 0.84 is almost the same as the one with EIS = 1. The minimum

and maximum estimated levels of risk aversion are 15 and 22 when EIS = 0.3 and EIS = 2,

respectively. The two standard error bounds include risk-aversion levels around 10 for all

values of EIS. Moreover, all risk-aversion estimates are statistically different from zero and

the cross-sectional R̄2 statistics remain sizable regardless of the values of EIS. These results

suggest that a key driver of the stochastic discount factor in (19) is its first term as used in

our main exercise, and the second term which is added in this extension plays a minor role

in explaining the cross-section of corporate bond risk premiums. The fact that the results

are not sensitive to the choice of EIS justifies our initial assumption of the unitary EIS in the

main results. In Internet Appendix VII, we extend the VAR to account for a volatility shock

to the SDF as in Bansal et al. (2014) and confirm that the results are similar.

In sum, we find that either unconditional or conditional measures of the long-run risk

explain the corporate bond risk premiums well.

4 Extension

4.1 Departure from the lognormality assumption

In deriving the Euler equation for log excess returns in (9), we assume that consump-

tion growth and asset returns are jointly lognormally distributed. While this is a standard
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assumption in the literature, it may not be suitable for our sample of corporate bonds.

Corporate bond returns may not be lognormally distributed because in the Merton (1974)

model, corporate bonds are viewed as a portfolio of risk-free assets and a short position on

a put option on the underlying firm’s asset, and thus their payoff is a nonlinear function of

the asset value. This feature of corporate bonds’ payoff may lead to the skewed distribution

of bond returns, invalidating the Euler equation derived in (9).

Harvey and Siddique (2000) present an empirical framework to test an asset pricing

model accounting for skewness in asset returns. To account for the dependence in higher-

order moments between factors and asset returns, Harvey and Siddique (2000) express

expected returns as a function of covariance and coskewness between factors and asset

returns. We follow their approach, and expand the Euler equation up to the third order:

1 = E[St+1Ri,t+1], (21)

≈ Ḡ

(
1 + E[ri,t+1] +

1

2
E[r2i,t+1] + (1− γ)E[εc,t→t+Sri,t+1]

+
1

2
(1− γ)2E[ε2c,t→t+Sri,t+1] +

1

2
(1− γ)E[εc,t→t+Sr

2
i,t+1] + Const

)
. (22)

where Ḡ = e
log δ−0.5(1−γ)2η(δ)2+(1−γ)µ∑∞

s=0 δ
s∆ct+1+s . Eq (22) shows that the risk premiums de-

pend on covariance as well as coskewness.25 Thus, we estimate the GMM using the moment

25The constant term in (22) isE[(1−γ)εc,t→t+S ]+ 1
2E[(1−γ)2ε2c,t→t+S ]+ 1

6E[(1−γ)3ε3c,t→t+S ]+ 1
6E[r3i,t+1].

Since the last term is small, we assume E[r3i,t+1] = E[r3f,t] in deriving (23).
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conditions:

0 = E



 ri,t+1 − rf,t +
E(r2i,t+1)

2
− E(r2f,t)

2
− ζ − (γ − 1)εc,t→t+S (ri,t+1 − rf,t)

+1
2
(1− γ)2ε2c,t→t+S (ri,t+1 − rf,t)− 1

2
(γ − 1)εc,t→t+S

(
r2i,t+1 − r2f,t

)


εc,t→t+S

 . (23)

Unlike Harvey and Siddique (2000), the regression specification in (23) restricts the set

of free parameters, (ζ, γ), to match those in the main analysis since the loadings on the

covariance and coskewness both depend on the risk-aversion parameter γ.

Table 9 presents the estimated slope coefficients in (23) and the fit of the model using

40 bond portfolios as test assets. We find that the estimated γ is 8, much lower than γ of

15 from our main result. In terms of the cross-sectional fit, R̄2 is 0.38, also lower than the

main result. Overall, we find evidence for the improvement of the level of risk aversion as

we account for skewness in bond returns although the pricing performance is not as strong

as before in this case.

4.2 International corporate bonds

As another extension, we perform an out-of-sample test using U.S. dollar-denominated

corporate bonds issued by foreign firms. Specifically, we use bonds in the ICE Bank of

America Merrill Lynch Global Corporate Index and High Yield Index. We focus on 30

economies with a non-trivial number of observations every year, including: Australia, Bel-

gium, Brazil, Canada, Chile, China, Colombia, France, Germany, Hong Kong, India, Israel,

Italy, Japan, Malaysia, Mexico, Netherlands, Norway, Peru, Qatar, Russia, Singapore, South

Korea, Spain, Sweden, Switzerland, Thailand, Turkey, the United Arab Emirates, and the

United Kingdom. We use U.S. dollar-denominated bonds because according to Maggiori,
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Neiman, and Schreger (2020), there is a home currency bias for bond investors, and thus

those bonds are likely to be included in the U.S. investors’ portfolios. Using those bonds, we

form 40 portfolios based on the 7 characteristics as in the main results. We then estimate

the Euler equation in (17) and report the estimated risk-aversion coefficients in Table 10.

Using the international corporate bond portfolios, the estimated risk-aversion coefficient

is 11 for the 20-quarter consumption growth of wealthy households, which is close to the

estimate of 15 in the main results. Since the model generates a reasonable cross-sectional

R-squared of 0.46, long-run consumption risk explains these international bonds with a

parameter similar to the main results for the U.S. corporate bonds.

4.3 Time-series analysis using factor-mimicking portfolios and comparisonwith other
factor models

In this section, we compare the performance of our consumption risk factor with that

of other risk factors proposed in the literature. To this end, we follow the econometric

framework of Barillas and Shanken (2018) and regress a risk factor on other factors to

study whether it carries risk premiums unexplained by the other factors. Since this ap-

proach requires the factor to be an excess return, we create a factor-mimicking portfolio

for the wealthy households’ long-run consumption risk. To construct the mimicking portfo-

lio, we project the discounted 20-quarter cumulative consumption growth (unconditional

measure) or shocks to the long-run expectation (conditional measure) on quarterly excess

returns of six bond portfolios independently sorted on 3 maturity bins and 2 credit rating

bins (investment-grade and high-yield),

(Long-run consumption shock)t+1 = a+ b′Rt+1 + ut+1, (24)
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where (Long-run consumption shock)t+1 =
∑19

s=0 δ
s(ct+1+s−ct+s) or (Êt+1−Êt)

∑∞
s=0 δ

s(ct+1+s−

ct+s). A factor-mimicking portfolio is given by the fitted value of this projection b̂′Rt+1. To

extend the sample period, we estimate b using the sample after March 1984 and assume

that the same b applies to the earlier sample from April 1973, resulting in the sample ex-

tended by roughly 10 years. We find that the average excess return on the factor mimicking

portfolio is 0.68% and 0.51% per quarter for the unconditional and conditional measures,

respectively.

For comparison, we gather 10 asset pricing factors proposed in the literature: the value,

size, profitability, investment, term, and default factors of Fama and French (1993, 2015);

the intermediary capital factor of He, Kelly, andManela (2017); the bondmarket, downside

risk, and credit risk factors of Bai, Bali, and Wen (2019). Since the intermediary capital

factor is not an excess return, we project it on the same base assets as we did for the

consumption risk factor using (24) and create an intermediary factor-mimicking portfolio.

Panel A1 of Table 11 reports the average excess returns on the other factors and the es-

timates for the regression of these factors on the consumption-mimicking portfolio returns.

We find that, except for the size and default factors, the factors proposed in the literature

earn significantly positive risk premiums during our sample period.

The intercept of the regressions measures the risk premiums on these factors unex-

plained by the consumption-mimicking portfolio. The estimates in Panel A1 suggest that

the bond risk factors have alphas lower than the average excess returns. For example, the

bond market, downside risk, credit risk, and the intermediary risk factors have alphas of

-0.08%, -0.12%, -0.06%, and -0.39% respectively, and these estimates are insignificantly

different from zero. In contrast, we find that the equity risk factors are largely orthogonal to

35

Electronic copy available at: https://ssrn.com/abstract=3669068



the consumption-mimicking portfolio with near-zero R-squared. As a result, the estimated

alphas are similar to the average excess returns. These results are expected because the

consumption-mimicking portfolio is created by a projection on bond returns.

In Panel A2, we repeat the exercise using the mimicking portfolios for the VAR-based

long-run consumption shocks. This alternative mimicking portfolio generates higher betas

for the other bond factors, lowering their alphas even further. Overall, we find that the

long-run consumption factor explains other bond factors well.

Next, we switch the left-hand side and right-hand side of the regression and regress the

consumption mimicking portfolios on each of the other risk factors. Panels B1 and B2 of

Table 11 report the estimated intercepts, slope coefficients, and adjusted R-squared values

of the regression.

We find that the alphas of the consumption-mimicking portfolio are positive for all re-

gression specifications. When it is regressed on other bond factors, the alpha is lower than

the average excess returns but remains significantly positive. For example, the alpha of

the consumption-mimicking portfolio against the bond market, downside risk, credit risk,

and the intermediary factors is 0.36%, 0.51%, 0.58%, and 0.35%, respectively. When re-

gressed on the stock factors, the alphas are virtually the same as the average excess returns

of 0.68%. The results using the VAR-based consumption risk, reported in Panel B2, are

highly similar to the one using the 20-quarter consumption growth. These results show

that the consumption risk factor is not subsumed by other bond and equity risk factors.

Furthermore, it carries information on corporate bond risk premiums that explain the ex-

isting bond factors.
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4.4 Illiquidity of corporate bonds

Bai, Bali, and Wen (2019) show that illiquidity measures predict the cross-section of

corporate bond returns. To examine whether the consumption-based model explains illiq-

uidity premium, we sort corporate bonds into quintiles based on the Roll measure (square

root of negative autocovariance of daily log price changes calculated in each month), age

(time elapsed since issuance), issue amount of bonds as well as the betas with respect to

the noise measure of Treasury yield curve proposed by Hu, Pan, and Wang (2013). The Roll

measure is available only after July 2002 when TRACE data starts. For the noise betas, we

compute 36-month rolling betas using the first difference in the noise measure.

We estimate the GMM cross-sectional regressions using 20 illiquidity-sorted portfolios

with the CEX wealthy household consumption and NIPA aggregate consumption. In Table

12, with the CEX consumption of wealthy households, the risk-aversion estimate is statisti-

cally indistinguishable from zero. A poor performance of the model in explaining illiquidity-

sorted portfolios is exacerbated with the NIPA aggregate consumption, as the estimated γ is

negative at -27 in this case. Therefore, the long-run risk model is not a panacea; it explains

the cross-section of bond returns likely to be associated with default risk and macroeco-

nomic uncertainty, but it does not explain illiquidity premiums.

5 Conclusion

In this article, we show that a one-factor model based on long-run consumption risk can

explain the cross-section of corporate bond returns. Consistent with the literature on equity

risk premiums, we find that our model explains the most cross-sectional variation in risk
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premiums associated with credit spreads, maturity, credit rating, downside risk, idiosyn-

cratic volatility, the intermediary factor betas, and long-term reversals with a reasonable

risk-aversion coefficient of 15. The performance of the one-factor model suggests that it is

possible for a single macroeconomic factor to summarize the various dimensions of corpo-

rate bond risk premiums previously described by multi-factor models in the literature.

Our finding resonates with the literature which explains credit spreads at the aggregate

level using long-run risk models (e.g., Bhamra, Kuehn, and Strebulaev, 2010a,b; Chen,

2010; Elkamhi and Salerno, 2020). However, in this paper, we directly estimate the quantity

and price of risk using bond return data, avoiding the issue of calibrating themodel to match

poorly estimated historical default frequency.

Our results also point to the re-interpretation of the well-known class of factor mod-

els based on shocks to the financial intermediary’s capital (e.g. Adrian, Etula, and Muir

(2014), He, Kelly, and Manela (2017)). The fact that consumption shocks generate a pat-

tern in covariance that matches average returns is striking given that corporate bonds are

mainly owned by financial institutions and traded in dealer-driven over-the-counter market.

However, our findings are not mutually exclusive with the financial intermediary-based ex-

planation of risk premiums. It is possible to argue that depleted intermediary capital causes

wealthy households’ expectations for the long-run consumption growth to fall, or vice versa.

As pointed out by Santos and Veronesi (2021), the fact that the long-run consumption risk

correlates with the prediction of the intermediary-based model does not indicate which

shock causes the other. To ascertain whether consumption or intermediary capital is the

fundamental source of shocks that are priced in the cross-section of corporate bonds, we

need to go beyond the reduced-form analysis presented in this article.
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Table 1. Summary Statistics of Wealthy Households’ and Aggregate Consumption
Growth: Volatility and Sensitivity with Respect to Asset Returns

This table reports volatility of S-quarter growth rate of CEX wealthy households’ consumption, CEX aggregate
consumption, or NIPA aggregate consumption in Panel A and time-series regressions of those consumption
measures on aggregate bond returns over different long-run horizons S in Panel B,

S−1∑
s=0

δs(ct+1+s − ct+s) = b0 + b1rt+1 + ut,t+1+S ,

where δ = 0.951/4. Aggregate corporate bond returns are the value-weighted average bond returns using the
bond-level data used in this study. Time period spans from April 1973 to December 2019 for NIPA data and
March 1984 to December 2019 for CEX data. Standard errors based on Newey and West (1987) are reported
in parentheses.

S = 1 2 4 8 12 16 20 24

Panel A: Volatility of consumption growth
CEX wealthy 0.083 0.088 0.086 0.089 0.089 0.088 0.088 0.084
CEX aggregate 0.024 0.025 0.023 0.021 0.024 0.022 0.023 0.022
NIPA aggregate 0.004 0.008 0.013 0.021 0.027 0.031 0.035 0.038

Panel B: Sensitivity to corporate bond returns
CEX wealthy 0.260 0.370 0.253 0.098 0.145 0.450 0.383 0.258
(s.e.) (0.130) (0.126) (0.173) (0.108) (0.132) (0.129) (0.114) (0.116)
R2 0.008 0.015 0.007 0.001 0.002 0.023 0.016 0.008

CEX aggregate 0.149 0.052 0.089 -0.012 0.027 0.044 0.037 0.037
(s.e.) (0.044) (0.061) (0.054) (0.076) (0.057) (0.060) (0.074) (0.063)
R2 0.039 0.004 0.013 0.000 0.001 0.004 0.002 0.003

NIPA aggregate -0.004 0.021 0.068 0.113 0.142 0.142 0.129 0.112
(s.e.) (0.011) (0.018) (0.028) (0.034) (0.041) (0.052) (0.059) (0.066)
R2 0.001 0.012 0.042 0.042 0.041 0.031 0.021 0.014
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Table 2. Average Excess Returns and Short-Run/Long-Run Covariances Between Excess Returns and Wealthy House-
holds’ Consumption Growth

This table reports average excess returns, Ê(ri,t+1−rf,t)+
σ̂2(ri,t+1)

2 − σ̂2(rf,t)
2 and the quantity of risk for the short-run risk (denoted by SR): ˆcov(ct+1−

ct, ri,t+1 − rf,t) and the long-run risk (denoted by LR): ˆcov(
∑19
s=0 δ

s(ct+1+s − ct+s), ri,t+1 − rft ) for each portfolio group where ri,t+1 is the quarterly
log return of an asset i, rf,t is the quarterly log rate of 30-day T-bill, δ = 0.951/4, ct is the log consumption. The long-run consumption risk factor is
measured by the discounted cumulative 20-quarter consumption growth. Consumption of wealthy households defined as the top 30% of asset holders
from CEX data is used. The covariances are computed as the unconditional sample covariances. Bootstrapped standard errors computed with 5,000
replications are reported in parentheses. Time period spans from March 1984 to December 2019.

Low High High -
Low

1 2 3 4 5 6 7 8 9 10 10 - 1

Panel A: Credit spread portfolios
Returns (%) 0.8219 0.9969 1.0989 1.0845 1.1634 1.2405 1.2518 1.3210 1.3151 2.4959 1.6740

(0.1104) (0.1191) (0.1529) (0.168) (0.1834) (0.1688) (0.1916) (0.1883) (0.2475) (0.4835) (0.4688)
SR (%) 0.0091 0.0217 0.0199 0.0261 0.0327 0.0322 0.0263 0.0278 0.0149 0.0504 0.0413

(0.0047) (0.0085) (0.0105) (0.0092) (0.0091) (0.009) (0.01) (0.0088) (0.0113) (0.0173) (0.0188)
LR (%) 0.0186 0.0219 0.0197 0.0226 0.0258 0.0226 0.0232 0.0296 0.0399 0.1115 0.0929

(0.0063) (0.0075) (0.0091) (0.0082) (0.0088) (0.0077) (0.0074) (0.0076) (0.0146) (0.0368) (0.0379)

Low High High -
Low

Low High High -
Low

1 2 3 4 5 5 - 1 1 2 3 4 5 5 - 1

Panel B: Downside portfolios Panel C: Maturity portfolios
Returns (%) 0.7512 1.0641 1.1965 1.3227 1.9685 1.2173 0.8750 1.1297 1.2188 1.3261 1.5266 0.6516

(0.0531) (0.1282) (0.1872) (0.2378) (0.3919) (0.3580) (0.0683) (0.1334) (0.2083) (0.1960) (0.2410) (0.2008)
SR (%) 0.0115 0.0250 0.0368 0.0407 0.0572 0.0457 0.0122 0.0196 0.0233 0.0286 0.0387 0.0265

(0.0043) (0.0075) (0.0104) (0.0118) (0.0147) (0.0125) (0.0037) (0.0062) (0.0090) (0.0126) (0.0145) (0.0118)
LR (%) 0.0147 0.0266 0.0300 0.0363 0.0855 0.0709 0.0211 0.0294 0.0352 0.0300 0.0323 0.0112

(0.0046) (0.0059) (0.0084) (0.0092) (0.0232) (0.0231) (0.0048) (0.0071) (0.0105) (0.0084) (0.0116) (0.0076)

Panel D: Rating portfolios Panel E: Intermediary portfolios
Returns (%) 1.0844 1.1498 1.1757 1.2472 1.6225 0.5381 0.9271 1.0075 1.0647 1.1280 1.5068 0.5797

(0.1177) (0.1959) (0.1619) (0.1852) (0.3221) (0.2677) (0.2751) (0.1038) (0.1103) (0.1354) (0.3014) (0.2505)
SR (%) 0.0223 0.0275 0.0270 0.0275 0.0227 0.0004 0.0212 0.0205 0.0196 0.0238 0.0162 -0.0050

(0.0098) (0.0099) (0.0102) (0.0088) (0.0141) (0.0102) (0.0081) (0.0069) (0.0079) (0.0077) (0.0149) (0.0089)
LR (%) 0.0192 0.0233 0.0259 0.0374 0.0579 0.0387 0.0422 0.0298 0.0257 0.0325 0.0456 0.0034

(0.0077) (0.0079) (0.0104) (0.0082) (0.0211) (0.0199) (0.0112) (0.0078) (0.0069) (0.0066) (0.0176) (0.0092)

Panel F: Idiosyncratic portfolios Panel G: Long-term reversal portfolios
Returns (%) 0.7479 1.0495 1.3109 1.4016 1.8245 1.0767 1.1421 1.0146 1.2065 1.0361 2.0200 0.8779

(0.0530) (0.1392) (0.1861) (0.2480) (0.3492) (0.3215) (0.2137) (0.1526) (0.1174) (0.2170) (0.3402) (0.3332)
SR (%) 0.0107 0.0264 0.0352 0.0397 0.0638 0.0531 0.0156 0.0359 0.0262 0.0326 0.0394 0.0238

(0.0041) (0.0075) (0.0104) (0.0119) (0.0158) (0.0147) (0.0118) (0.0088) (0.0093) (0.0086) (0.0095) (0.0102)
LR (%) 0.0150 0.0259 0.0330 0.0371 0.0842 0.0692 0.0114 0.0353 0.0219 0.0438 0.0872 0.0759

(0.0044) (0.0060) (0.0075) (0.0097) (0.0209) (0.0215) (0.0103) (0.0085) (0.0096) (0.0085) (0.0188) (0.0195)
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Table 3. GMM Cross-Sectional Regression Using All Corporate Bond Portfolios
This table reports GMM cross-sectional regression results over different long-run horizons S: Ê[ri,t+1 − rf,t] +

σ̂2(ri,t+1)
2 − σ̂2(rf,t)

2 = ζ + (γ −
1) ˆcov(

∑S−1
s=0 δ

s(ct+1+s − ct+s), ri,t+1 − rf,t) + ei where ri,t+1 is the quarterly log return of an asset i, rf,t is the quarterly log rate of 30-day T-bill
in Panels A, B, D and E while it is the log return on matching Treasury bonds in Panel C, δ = 0.951/4, ct is the log consumption. The long-run consump-
tion risk factor is measured by the discounted cumulative consumption growth over multiple horizons

∑S−1
s=0 δ

s(ct+1+s− ct+s). Panels A, C and E report
the results using wealthy households (defined as the top 30% of asset holders) from CEX, while Panels B and D report those using the consumption
growth of aggregate households from NIPA and from CEX, respectively. Panel E report the results using the consumption of CEX corporate bondholders.
The quantity of risk is jointly estimated with parameters ζ, η, and γ using GMM. Test assets are 40 portfolios including 10 credit spread-sorted port-
folios, 5 downside risk-sorted portfolios, 5 maturity-sorted portfolios, 5 credit rating-sorted portfolios, 5 intermediary factor (He, Kelly, and Manela,
2017) beta-sorted portfolios, 5 idiosyncratic volatility-sorted portfolios, and 5 long-term reversal portfolios. Reported are the intercepts ζ, η and im-
plied risk-aversion coefficients γ with 95% confidence intervals for parameters, based on bootstrapping with 5,000 replications in square brackets. The
cross-sectional R̄2 is defined as 1− varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test asset and R̂ei is the predicted average excess return of portfolio i.
95% confidence intervals for R̄2 are reported in square brackets. The pricing error is measured by RMSE

RMSR where RMSE =
√

1
N

∑N
i=1(E(Rei )− R̂ei)2

and RMSR =
√

1
N

∑N
i=1E(Rei )

2. Time period spans from March 1984 to December 2019 for CEX and from February 1973 to December 2019 for
NIPA. Unconditional pricing errors ζ and η are multiplied by 100 for ease of exposition.

S (quarters) 1 2 4 8 12 16 20 24

Regressions: Ê[ri,t+1 − rf,t] +
σ̂2(ri,t+1)

2 − σ̂2(rf,t)
2 = ζ + (γ − 1) ˆcov(

∑S−1
s=0 δ

s(ct+1+s − ct+s), ri,t+1 − rf,t) + ei
Panel A: CEX consumption of wealthy households
ζ (%) 0.71 0.46 0.85 0.99 0.96 0.55 0.74 0.73

[0.46 1.29] [0.12 1.20] [0.43 1.23] [0.60 1.41] [0.50 1.69] [0.24 0.93] [0.42 0.96] [0.24 1.10]
γ 23.5 23.6 17.1 21.9 16.8 16.1 15.4 23.5

[-2.3 40.7] [0.5 35.1] [-4.7 31.6] [-20.0 45.7] [-20.5 39.1] [4.3 25.9] [7.1 25.9] [5.8 46.5]

R̄2 0.33 0.72 0.21 0.29 0.13 0.69 0.80 0.62
[0.00 0.67] [0.00 0.93] [0.00 0.75] [0.00 0.66] [0.00 0.55] [0.05 0.90] [0.26 0.90] [0.08 0.80]

RMSE
RMSR 0.22 0.14 0.25 0.24 0.26 0.14 0.12 0.17
Number of assets 40 40 40 40 40 40 40 40
Number of asset-month 16,940 16,820 16,580 16,100 15,620 15,140 14,660 14,180

Panel B: NIPA aggregate consumption
ζ (%) 0.63 0.33 0.29 0.26 0.18 0.24 0.30 0.78

[0.23 1.00] [-0.06 1.01] [-0.06 1.02] [-0.17 1.01] [-0.17 0.97] [-0.14 1.10] [-0.07 1.18] [0.19 1.29]
γ 254.6 130.7 71.0 50.1 50.4 56.8 78.1 29.6

[119.4 332.5] [35.9 188.6] [17.5 101.8] [17.1 67.9] [12.8 69.9] [-24.3 74.8] [-56.0 92.3] [-71.0 83.5]

R̄2 0.67 0.57 0.59 0.64 0.62 0.58 0.53 0.04
[0.30 0.78] [0.08 0.74] [0.05 0.76] [0.09 0.79] [0.08 0.82] [0.05 0.81] [0.00 0.82] [0.00 0.76]

RMSE
RMSR 0.18 0.21 0.21 0.20 0.20 0.19 0.22 0.32
Number of assets 40 40 40 40 40 40 40 40
Number of asset-month 21,400 21,280 21,040 20,560 20,080 19,600 19,120 18,640
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Table 3. GMM Cross-Sectional Regression Using All Corporate Bond Portfolios (Cont’d)

S (quarters) 1 2 4 8 12 16 20 24

Regressions: Ê[ri,t+1 − rf,t] +
σ̂2(ri,t+1)

2 − σ̂2(rf,t)
2 = ζ + (γ − 1) ˆcov(

∑S−1
s=0 δ

s(ct+1+s − ct+s), ri,t+1 − rf,t) + ei
Panel C: CEX consumption of wealthy households using matching treasuries as risk-free assets
ζ (%) 0.31 -0.11 0.08 0.02 0.17 -0.12 -0.11 -0.01

[-0.12 0.53] [-0.28 0.25] [-0.27 0.29] [-0.22 0.33] [-0.15 0.39] [-0.32 0.16] [-0.28 0.12] [-0.23 0.31]
γ 17.1 19.1 11.4 23.3 12.2 12.4 14.0 21.9

[-24.7 45.8] [-17.6 32.1] [-11.0 33.1] [-21.1 49.8] [-29.1 37.6] [0.1 23.3] [5.6 21.4] [0.7 47.4]
R̄2 0.09 0.43 0.09 0.35 0.07 0.41 0.73 0.54

[0.00 0.55] [0.00 0.75] [0.00 0.65] [0.00 0.76] [0.00 0.55] [0.00 0.75] [0.11 0.85] [0.01 0.81]
RMSE
RMSR 0.77 0.62 0.79 0.66 0.82 0.70 0.46 0.58
Number of assets 40 40 40 40 40 40 40 40
Number of asset-month 16,940 16,820 16,580 16,100 15,620 15,140 14,660 14,180

Panel D: CEX aggregate consumption
ζ (%) 0.44 0.79 0.44 1.02 0.52 0.43 0.83 0.92

[0.26 1.22] [0.51 1.32] [0.21 1.22] [0.64 1.41] [0.27 1.27] [0.23 1.39] [0.33 1.36] [0.11 1.49]
γ 60.7 85.6 75.8 71.2 104.7 108.4 64.4 51.3

[-23.6 82.1] [-53.6 102.4] [-25.7 103.3] [-43.3 95.3] [-41.4 118.9] [-56.4 118.8] [-40.7 90.3] [-65.6 119.7]
R̄2 0.61 0.66 0.48 0.70 0.79 0.50 0.31 0.08

[0.00 0.89] [0.01 0.83] [0.00 0.89] [0.00 0.85] [0.01 0.92] [0.00 0.88] [0.00 0.88] [0.00 0.91]
RMSE
RMSR 0.17 0.16 0.20 0.15 0.13 0.18 0.22 0.27
Number of assets 40 40 40 40 40 40 40 40
Number of asset-month 16,940 16,820 16,580 16,100 15,620 15,140 14,660 14,180

Panel E: CEX consumption of bondholders
ζ (%) 0.85 0.64 0.52 0.98 0.80 0.50 0.82 0.68

[0.68 1.36] [0.47 1.14] [0.31 1.13] [0.73 1.34] [0.44 1.47] [0.3 1.03] [0.44 1.16] [0.41 1.29]
γ 26.3 20.7 21.6 23.9 28.9 19.6 14.9 22.0

[1.6 38.9] [3.3 30.2] [-0.5 27.7] [-19.3 34.2] [-15.4 41.8] [1.2 28.7] [6.6 24.1] [1.7 28.7]
R̄2 0.44 0.86 0.69 0.67 0.56 0.79 0.80 0.68

[0.01 0.66] [0.01 0.93] [0.00 0.90] [0.00 0.83] [0.00 0.84] [0.01 0.90] [0.15 0.91] [0.02 0.85]
RMSE
RMSR 0.20 0.10 0.15 0.16 0.18 0.11 0.12 0.16
Number of assets 40 40 40 40 40 40 40 40
Number of asset-month 16,940 16,820 16,580 16,100 15,620 15,140 14,660 14,180
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Table 4. GMM Cross-Sectional Regression Using Equities

This table reports GMM cross-sectional regression results with different long-run horizons S using equity portfolios as test assets: Ê[ri,t+1 − rf,t] +
σ2(ri,t+1)

2 − σ2(rf,t)
2 = ζ+(γ−1) ˆcov(

∑S−1
s=0 δ

s(ct+1+s−ct+s), ri,t+1−rf,t)+ei where ri,t+1 is the quarterly log return of an asset i, rf,t is the log rate of 30-
day T-bill, δ = 0.951/4, ct is the log consumption. The long-run consumption risk factor is measured by the discounted cumulative consumption growth
over multiple horizons

∑S−1
s=0 δ

s(ct+1+s − ct+s). The quantity of risk is jointly estimated with parameters ζ and γ using GMM. Test assets are 25 Fama-
French size and book-to-market sorted portfolios from July 1926 to December 2019. Reported are the intercepts ζ and implied risk-aversion coefficients
γ with 95% confidence intervals for parameters, based on bootstrapping with 5,000 replications in square brackets. The cross-sectional R̄2 is defined as
1−varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test asset and R̂ei is the predicted average excess return of portfolio i. 95% confidence intervals for R̄2

are reported in square brackets. The pricing error is measured by RMSE
RMSR where RMSE =

√
1
N

∑N
i=1(E(Rei )− R̂ei)2 and RMSR =

√
1
N

∑N
i=1E(Rei )

2.
Time period spans from March 1984 to December 2019 for CEX wealthy households’ consumption and from April 1959 to December 2019 for NIPA
aggregate consumption. Unconditional pricing errors ζ are multiplied by 100 for ease of exposition.

S (quarters) = 1 2 4 8 12 16 20 24

Panel A: CEX consumption of wealthy households
ζ (%) 2.59 1.60 2.23 2.30 2.72 2.14 1.69 2.50

[1.46 3.56] [0.60 3.29] [1.32 3.28] [1.45 3.40] [1.79 3.50] [1.34 3.58] [0.84 3.15] [1.71 3.64]
γ 18.0 16.8 13.3 20.5 11.2 10.7 17.3 20.6

[-15.3 26.8] [-6.4 24.5] [0.7 25.7] [1.2 25.5] [-6.7 23.6] [-8.0 19.2] [2.1 24.5] [-14.6 25.8]
R̄2 0.27 0.35 0.22 0.55 0.10 0.10 0.43 0.31

[0.00 0.48] [0.00 0.49] [0.00 0.46] [0.01 0.68] [0.00 0.56] [0.00 0.45] [0.00 0.58] [0.00 0.60]
RMSE
RMSR 0.18 0.17 0.19 0.15 0.20 0.20 0.16 0.18
Number of assets 25 25 25 25 25 25 25 25
Number of asset-month 10,750 10,675 10,525 10,225 9,925 9,625 9,325 9,025

Panel B: NIPA Aggregate consumption
ζ (%) 0.05 0.39 1.91 0.93 1.48 1.86 1.68 1.75

[-0.99 3.80] [-1.07 3.99] [0.02 3.63] [0.01 3.06] [0.11 2.67] [0.69 2.78] [0.70 2.79] [0.99 2.91]
γ 165.7 105.4 30.4 46.4 37.5 31.5 29.3 28.3

[-129.1 242.4] [-82.7 171.0] [-38.6 98.6] [-9.8 80.5] [7.4 81.2] [6.8 85.8] [3.7 74.4] [0.6 61.8]
R̄2 0.50 0.31 0.07 0.40 0.43 0.34 0.34 0.31

[0.05 0.69] [0.00 0.62] [0.00 0.55] [0.00 0.72] [0.04 0.72] [0.03 0.69] [0.01 0.67] [0.01 0.61]
RMSE
RMSR 0.15 0.18 0.21 0.17 0.16 0.17 0.18 0.18
Number of assets 25 25 25 25 25 25 25 25
Number of asset-month 18,225 18,150 18,000 17,700 17,400 17,100 16,800 16,500
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Table 5. GMM Cross-Sectional Regression for Each Portfolio Group
This table reports GMM cross-sectional regression results for each portfolio group: Ê[ri,t+1−rf,t]+ σ̂2(ri,t+1)

2 − σ̂2(rf,t)
2 = ζ+(γ−1) ˆcov(

∑S−1
s=0 δ

s(ct+1+s−
ct+s), ri,t+1−rf,t)+ei where ri,t+1 is the quarterly log return of an asset i, rf,t is the quarterly log rate of 30-day T-bill, δ = 0.951/4, ct is the log consump-
tion. The long-run consumption risk factor is measured by the discounted cumulative consumption growth over multiple horizons

∑S−1
s=0 δ

s(ct+1+s−ct+s)
where S = 20 quarters for CEX wealthy household consumption (Panel A) and S = 8 quarters for NIPA aggregate consumption (Panel B). The quantity
of risk is jointly estimated with parameters ζ, η, and γ using GMM. Test assets are 40 portfolios including 10 credit spread-sorted portfolios, 5 downside
risk-sorted portfolios, 5 maturity-sorted portfolios, 5 credit rating-sorted portfolios, 5 intermediary factor (He, Kelly, and Manela, 2017) beta-sorted
portfolios, 5 idiosyncratic volatility-sorted portfolios, and 5 long-term reversal portfolios. Reported are the intercepts ζ, η and implied risk-aversion
coefficients γ with 95% confidence intervals for parameters, based on bootstrapping with 5,000 replications in square brackets. The cross-sectional
R̄2 is defined as 1 − varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test asset and R̂ei is the predicted average excess return of portfolio i. 95% con-
fidence intervals for R̄2 are reported in square brackets. The pricing error is measured by RMSE

RMSR where RMSE =
√

1
N

∑N
i=1(E(Rei )− R̂ei)2 and

RMSR =
√

1
N

∑N
i=1E(Rei )

2. ‘R̄2 with same γ’ and ‘RMSE
RMSR with same γ’ report the pricing performance by imposing γ estimated using all portfolios.

Time period spans from March 1984 to December 2019 for CEX and from February 1973 to December 2019 for NIPA. Unconditional pricing errors ζ
are multiplied by 100 for ease of exposition.

Assets Credit Spread Downside Maturity Rating Intermediary IdioVol Reversal All
portfolios portfolios portfolios portfolios portfolios portfolios portfolios portfolios

Panel A: CEX consumption of wealthy households
ζ (%) 0.75 0.64 0.20 0.82 0.67 0.71 0.81 0.74

[0.33 1.00] [-0.01 0.85] [-0.46 1.28] [0.13 1.17] [0.25 1.56] [0.10 0.94] [0.47 1.13] [0.42 0.96]
γ 16.7 17.1 35.3 14.4 14.1 15.1 12.8 15.4

[8.7 32.3] [6.6 42.6] [-14.9 68.6] [-2.0 39.0] [-19.3 27.6] [5.2 40.7] [6.6 19.5] [7.1 25.9]
R̄2 0.94 0.96 0.56 0.96 0.24 0.87 0.69 0.80

[0.36 0.98] [0.68 1.00] [0.01 0.96] [0.06 0.99] [0.00 0.87] [0.45 0.99] [0.30 0.94] [0.26 0.90]
R̄2 with same γ 0.93 0.95 0.37 0.96 0.24 0.87 0.66 0.80
RMSE
RMSR 0.08 0.06 0.12 0.03 0.15 0.10 0.16 0.12
RMSE
RMSR with same γ 0.09 0.07 0.14 0.05 0.18 0.10 0.17 0.12

Number of assets 10 5 5 5 5 5 5 40
Number of asset-month 3,690 1,845 1,845 1,845 1,785 1,845 1,805 14,660

Panel B: NIPA aggregate consumption
ζ (%) 0.17 0.02 0.53 0.23 0.18 0.16 0.08 0.26

[-1.24 0.98] [-0.75 0.97] [0.33 1.13] [-1.50 1.04] [-0.43 1.14] [-0.32 1.00] [-0.77 1.29] [-0.17 1.01]
γ 59.3 72.0 22.6 41.5 47.8 63.4 88.9 50.1

[31.4 113.5] [29.2 149.2] [-11.8 46.4] [17.1 98.8] [-24.5 108.3] [23.6 123.8] [-35.2 141.9] [17.1 67.9]
R̄2 0.86 0.97 0.43 0.96 0.98 0.98 0.46 0.64

[0.53 0.94] [0.49 1.00] [0.00 0.73] [0.73 0.98] [0.01 0.98] [0.43 0.99] [0.00 0.86] [0.09 0.79]
R̄2 with same γ 0.84 0.89 -0.27 0.91 0.98 0.94 0.35 0.64
RMSE
RMSR 0.15 0.05 0.10 0.05 0.03 0.04 0.22 0.20
RMSE
RMSR with same γ 0.17 0.13 0.23 0.20 0.15 0.10 0.33 0.20

Number of assets 10 5 5 5 5 5 5 40
Number of asset-month 5,300 2,540 2,660 2,660 2,480 2,540 2,380 20,560
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Table 6. VAR Estimation

Panel A reports the VAR estimation with the consumption growth and the selected state variables. The system
of equations is estimated using OLS equation by equation. Fn,t is the n-th factor from the PCA factors based
on 160 pre-selected variables. Panel B reports the predictive OLS regression of quarterly returns to the credit
spread sorted decile portfolios on the selected state variables. S1 and S10 denotes the lowest and highest credit
spread portfolio, respectively. Standard errors based on Newey and West (1987) are reported in parentheses.
The lag for the standard errors is automatically selected based on Newey and West (1994). *,**, and ***
indicate the significance at the 10%, 5%, and 1% levels, respectively. Time period spans from March 1984 to
December 2019. t denotes a month t.

xt−2 Constant Adj.R2 N

Dep. Var. F2,t−2 F6,t−2 F8,t−2 F2,t−3 F6,t−3 F8,t−3

Panel A: VAR estimation
ct+1 − ct−2 -0.0020 0.0484 0.1379 -0.0294 0.0280 -0.0960 -0.0088 0.0275 430

(0.0158) (0.0247) (0.0398) (0.0151) (0.0251) (0.0394) (0.0047)
F2,t+1 0.0197 0.0511 -0.1162 0.0213 -0.0231 0.1120 -0.0200 430

(0.0568) (0.0821) (0.1251) (0.0751) (0.068) (0.1399)
F6,t+1 0.0333 0.1344 -0.0148 0.0225 0.0879 0.0698 0.0141 430

(0.029) (0.0501) (0.0863) (0.0318) (0.0600) (0.0813)
F8,t+1 0.0096 0.0123 0.4828 -0.0105 0.0359 0.3239 0.2941 430

(0.0203) (0.0259) (0.0439) (0.0174) (0.0298) (0.0434)
F2,t 0.0076 0.1205 0.0942 0.0183 0.0313 -0.1017 -0.0154 430

(0.0538) (0.1112) (0.2185) (0.0786) (0.0767) (0.2003)
F6,t -0.0536 0.1512 -0.0613 0.0641 0.1322 0.0708 0.0439 430

(0.0322) (0.0491) (0.1013) (0.0273) (0.053) (0.078)
F8,t 0.0323 -0.0021 0.3922 -0.0216 0.0387 0.4258 0.3158 430

(0.0187) (0.0284) (0.0419) (0.0169) (0.0272) (0.0419)

Panel B: Predictive power for credit spread sorted decile portfolio returns
rS1t−2→t+1 0.0118 -0.0093 -0.0012 0.0049 -0.0009 0.0022 0.0165 0.0302 426

(0.0057) (0.0063) (0.0104) (0.0037) (0.0068) (0.0114) (0.0023)
rS2t−2→t+1 0.0149 -0.0115 -0.0069 0.0093 0.0037 -0.0108 0.0200 0.0364 426

(0.0080) (0.0091) (0.013) (0.0052) (0.0097) (0.0145) (0.0027)
rS3t−2→t+1 0.0117 -0.0140 -0.0078 0.0081 0.0038 -0.0072 0.0208 0.0177 426

(0.0083) (0.0103) (0.0145) (0.0061) (0.0107) (0.0161) (0.0029)
rS4t−2→t+1 0.0124 -0.0108 -0.0072 0.0081 0.0066 -0.0159 0.0216 0.0166 426

(0.0078) (0.0109) (0.0142) (0.0064) (0.0107) (0.0163) (0.0029)
rS5t−2→t+1 0.0097 -0.0122 -0.0165 0.0111 0.0036 -0.0112 0.0228 0.0148 426

(0.0078) (0.011) (0.0159) (0.0065) (0.0109) (0.0171) (0.0030)
rS6t−2→t+1 0.0071 -0.0164 -0.0132 0.0109 -0.0012 -0.0076 0.0230 0.0117 426

(0.007) (0.011) (0.0159) (0.0065) (0.0113) (0.0174) (0.0031)
rS7t−2→t+1 0.0035 -0.0230 -0.0114 0.0128 -0.0047 -0.0080 0.0232 0.0169 426

(0.0063) (0.0129) (0.0156) (0.0072) (0.0116) (0.0177) (0.0031)
rS8t−2→t+1 -0.0015 -0.0219 -0.0228 0.0105 -0.0037 -0.0175 0.0260 0.0144 426

(0.0061) (0.0136) (0.0167) (0.0071) (0.0113) (0.0176) (0.003)
rS9t−2→t+1 -0.0056 -0.0308 -0.0180 0.0140 -0.0070 -0.0191 0.0259 0.0171 426

(0.0081) (0.0162) (0.0214) (0.0092) (0.0139) (0.0219) (0.0033)
rS10t−2→t+1 -0.0411 -0.0536 0.0139 -0.0077 -0.0269 -0.0289 0.0340 0.0167 426

(0.0202) (0.0321) (0.0440) (0.0204) (0.0285) (0.0547) (0.0082)
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Table 7. Tests Using the Long-Run Risk Measure Based on VAR

This table presents GMM cross-sectional test results using the long-run risk measure based on VAR. The long-run consumption risk factor is measured as
(Êt+1− Êt)

∑∞
s=0 δ

s(ct+1+s− ct+s). The quantity of risk is jointly estimated with parameters ζ and γ using GMM. Consumption of wealthy households
defined as the top 30% of asset holders from CEX data is used. Test assets are 10 credit spread-sorted portfolios, 5 downside risk-sorted portfolios, 5
maturity-sorted portfolios, 5 credit rating-sorted portfolios, 5 intermediary factor (He, Kelly, and Manela, 2017) beta-sorted portfolios, 5 idiosyncratic
volatility-sorted portfolios, and 5 long-term reversal portfolios. 95% confidence intervals for parameters, based on bootstrapping with 5,000 replications,
are reported in square brackets. The cross-sectional R̄2 is defined as 1−varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test asset and R̂ei is the predicted
average excess return of portfolio i. 95% confidence intervals for R̄2 are reported in square brackets. The pricing error is measured by RMSE

RMSR where

RMSE =
√

1
N

∑N
i=1(E(Rei )− R̂ei)2 and RMSR =

√
1
N

∑N
i=1E(Rei )

2. ‘R̄2 with same γ’ and ‘RMSE
RMSR with same γ’ report the pricing performance by

imposing γ estimated using all portfolios. Time period spans from March 1984 to December 2019. Unconditional pricing errors ζ are multiplied by 100
for ease of exposition.

Assets Credit Spread Downside Maturity Rating Intermediary IdioVol Reversal All
portfolios portfolios portfolios portfolios portfolios portfolios portfolios portfolios

ζ (%) 0.75 0.51 0.67 0.89 0.60 0.69 0.64 0.74
[0.41 1.01] [0.09 0.80] [0.21 1.36] [0.60 1.16] [0.36 1.16] [0.13 0.92] [0.27 0.96] [0.43 1.12]

γ 19.6 25.2 24.5 14.0 30.6 18.9 26.5 19.7
[8.7 43.7] [7.9 62.3] [-23.9 68.9] [-1.8 37.1] [-17.1 43.9] [5.3 63.7] [13.3 40.4] [4.0 41.8]

R̄2 0.96 0.99 0.26 0.88 0.90 0.92 0.64 0.83
[0.49 0.98] [0.56 0.99] [0.00 0.92] [0.04 0.97] [0.01 0.97] [0.49 0.99] [0.20 0.92] [0.07 0.89]

R̄2 with same γ 0.96 0.94 0.25 0.71 0.78 0.91 0.60 0.83
RMSE
RMSR 0.06 0.03 0.16 0.05 0.05 0.09 0.16 0.11
RMSE
RMSR with same γ 0.06 0.10 0.16 0.08 0.09 0.11 0.17 0.11

Number of assets 10 5 5 5 5 5 5 40
Number of asset-month 4,260 2,130 2,130 2,130 2,070 2,130 2,090 16,940
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Table 8. Tests Using the Long-Run Risk Measure based on VAR with Different EIS
Coefficients

This table presents the GMM cross-sectional test results using the long-run risk measure based on VAR with
different EIS coefficients. To allow EIS to be different from one, we estimate the following log SDF: st+1 ≈
(1−γ)λ(δ)wt+1+(1/ρ−1)( 1

2w
′
t+1Θ0wt+1+w′t+1Θ1xt+θ1xt+θ2wt+1). The quantity of risk is jointly estimated

with parameters of ζ and γ using GMM. Consumption of wealthy households defined as the top 30% of asset
holders from CEX data is used. Test assets are 10 credit spread-sorted portfolios, 5 downside risk-sorted
portfolios, 5 maturity-sorted portfolios, 5 credit rating-sorted portfolios, 5 intermediary factor (He, Kelly, and
Manela, 2017) beta-sorted portfolios, 5 idiosyncratic volatility-sorted portfolios, and 5 long-term reversal
portfolios. Reported are the intercepts ζ and implied risk-aversion coefficients γ with 95% confidence intervals
for parameters, based on bootstrapping with 5,000 replications in square brackets. The cross-sectional R̄2 is
defined as 1− varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test asset and R̂ei is the predicted average excess
return of portfolio i. 95% confidence intervals for R̄2 are reported in square brackets. The pricing error is
measured by RMSE

RMSR where RMSE =
√

1
N

∑N
i=1(E(Rei )− R̂ei)2 and RMSR =

√
1
N

∑N
i=1E(Rei )

2. Time
period spans from March 1984 to December 2019. Unconditional pricing errors ζ are multiplied by 100 for
ease of exposition.

Assets EIS = 0.3 EIS = 0.5 EIS = 0.7 EIS = 1 EIS = 1.5 EIS = 2

ζ (%) 0.93 0.85 0.80 0.74 0.69 0.66
[0.66 1.29] [0.60 1.20] [0.54 1.15] [0.43 1.12] [0.36 1.10] [0.34 1.10]

γ 14.6 16.8 18.2 19.7 21.1 21.9
[4.6 24.3] [4.4 31.2] [4.2 36.7] [4.0 41.8] [3.8 41.4] [3.8 40.3]

R̄2 0.78 0.81 0.82 0.83 0.84 0.84
[0.07 0.86] [0.07 0.87] [0.07 0.88] [0.07 0.89] [0.07 0.89] [0.07 0.89]

RMSE
RMSR 0.13 0.12 0.12 0.11 0.11 0.11

Number of assets 40 40 40 40 40 40
Number of asset-month 16,940 16,940 16,940 16,940 16,940 16,940
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Table 9. Test Accounting for Skewness

This table reports a GMM cross-sectional regression result that accounts for skewness of bond returns:
Ê[ri,t+1− rf,t] + 1

2 Ê[r2i,t+1]− 1
2 Ê[r2f,t] = ζ+ (γ−1)Ê[εc,t→t+S(ri,t+1− rf,t+1)]− 1

2 (1−γ)2Ê[ε2c,t→t+S(ri,t+1−
rf,t)]+

1
2 (γ−1)Ê[εc,t→t+S(r2i,t+1−r2f,t)]+ei where εc,t→t+S =

∑S−1
s=0 δ

s(ct+1+s−ct+s)−µ∑S−1
s=0 δ

s(ct+1+s−ct+s)
,

ri,t+1 is the quarterly log return of an asset i, rf,t is the quarterly log rate of 30-day T-bill, δ = 0.951/4, and
ct is the log consumption. The long-run consumption risk factor is measured by the discounted cumula-
tive 20-quarter consumption growth (S = 20). Consumption of wealthy households defined as the top 30%
of asset holders from CEX data is used. The quantity of risk is jointly estimated with parameters ζ and γ.
Test assets are 40 portfolios including 10 credit spread-sorted portfolios, 5 downside risk-sorted portfolios,
5 maturity-sorted portfolios, 5 credit rating-sorted portfolios, 5 intermediary factor (He, Kelly, and Manela,
2017) beta-sorted portfolios, 5 idiosyncratic volatility-sorted portfolios, and 5 long-term reversal portfolios.
Reported are the intercepts ζ and implied risk-aversion coefficient γ with 95% confidence intervals for param-
eters, based on bootstrapping with 5,000 replications in square brackets. The cross-sectional R̄2 is defined
as 1− varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test asset and R̂ei is the predicted average excess return
of portfolio i. 95% confidence intervals for R̄2 are reported in square brackets. The pricing error is mea-
sured by RMSE

RMSR where RMSE =
√

1
N

∑N
i=1(E(Rei )− R̂ei)2 and RMSR =

√
1
N

∑N
i=1E(Rei )

2. Time period
spans from March 1984 to December 2019. Unconditional pricing errors ζ are multiplied by 100 for ease of
exposition.

ζ (%) 1.25
[0.17 0.86]

γ 8.1
[3.1 9.7]

R̄2 0.38
[0.05 0.55]

RMSE
RMSR 0.21

Number of assets 40
Number of asset-month 14,660
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Table 10. Test Using International Corporate Bonds

This table reports GMM cross-sectional regression results using 40 characteristics-sorted portfolios based on 30 countries with different long-run horizons
S: Ê[ri,t+1− rf,t] +

σ2(ri,t+1)
2 − σ2(rf,t)

2 = ζ + (γ − 1) ˆcov(
∑S−1
s=0 δ

s(ct+1+s− ct+s), ri,t+1− rf,t) + ei where ri,t+1 is the quarterly log return of an asset i,
rf,t is the quarterly log rate of 30-day T-bill, δ = 0.951/4, ct is the log consumption. The long-run consumption risk factor is measured by the discounted
cumulative consumption growth over multiple horizons

∑S−1
s=0 δ

s(ct+1+s− ct+s). The quantity of risk is jointly estimated with parameters ζ and γ using
GMM. Consumption of wealthy households defined as the top 30% of asset holders from CEX data is used. Test assets are 40 portfolios including 10
credit spread-sorted portfolios, 5 downside risk-sorted portfolios, 5 maturity-sorted portfolios, 5 credit rating-sorted portfolios, 5 intermediary factor
(He, Kelly, and Manela, 2017) beta-sorted portfolios, 5 idiosyncratic volatility-sorted portfolios, and 5 long-term reversal portfolios. 30 countries are
Australia, Belgium, Brazil, Canada, Chile, China, Colombia, France, Germany, Hong Kong, India, Israel, Italy, Japan, Malaysia, Mexico, Netherlands,
Norway, Peru, Qatar, Russia, Singapore, South Korea, Spain, Sweden, Switzerland, Thailand, Turkey, United Arab Emirates, and United Kingdom.
Reported are the intercepts ζ and implied risk-aversion coefficients γ with 95% confidence intervals for parameters, based on bootstrapping with 5,000
replications in square brackets. The cross-sectional R̄2 is defined as 1− varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test asset and R̂ei is the predicted
average excess return of portfolio i. 95% confidence intervals for R̄2 are reported in square brackets. The pricing error is measured by RMSE

RMSR where

RMSE =
√

1
N

∑N
i=1(E(Rei )− R̂ei)2 and RMSR =

√
1
N

∑N
i=1E(Rei )

2. Time period spans from February 1997 to December 2017. Unconditional
pricing errors ζ are multiplied by 100 for ease of exposition.

S (quarters) = 1 2 4 8 12 16 20 24

ζ (%) 0.89 0.68 0.89 1.13 1.16 0.95 0.92 1.15
[0.33 1.51] [0.28 1.19] [0.41 1.31] [0.46 1.49] [0.46 1.56] [0.48 1.43] [0.41 1.29] [0.47 1.69]

γ 32.1 15.0 18.4 32.2 -0.9 8.0 11.0 13.9
[-13.0 58.8] [-0.4 37.5] [-1.5 29.0] [-27.3 56.8] [-26.9 43.9] [-3.4 30.0] [-3.3 28.4] [-17.3 40.8]

R̄2 0.29 0.71 0.49 0.23 0.00 0.29 0.46 0.15
[0.00 0.83] [0.02 0.92] [0.01 0.84] [0.00 0.83] [0.00 0.78] [0.00 0.74] [0.01 0.90] [0.00 0.72]

RMSE
RMSR 0.24 0.15 0.20 0.25 0.28 0.20 0.19 0.24

Number of assets 40 40 40 40 40 40 40 40
Number of asset-month 9,435 9,435 9,435 9,435 9,075 8,595 8,115 7,635
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Table 11. Time-Series Regressions Using Other Factors and Long-Run Risk Factor
This table reports time-series regressions of other factors on the tradable long-run risk factor in Panel A for each factor i: Fi,t+1 = α + βXt+1 + εt+1.
We also regress the tradable long-run risk factor on other factors in Panel B for each factor i: Xt+1 = α + βFi,t+1 + εt+1. To estimate the tradable
long-run risk factor Xt+1, long-run consumption risk measures are regressed on excess returns of 6 bond portfolios sorted on maturity and credit
rating over the CEX sample period (March 1984 – December 2019), and then the coefficients are used to construct tradable long-run risk factor for
April 1973 and December 2019. Panels A1 and B1 report results using the unconditional long-run risk measure which is the discounted cumulative
consumption growth over 20-quarter horizons

∑19
s=0 δ

s(ct+1+s − ct+s). Panels A2 and B2 report results using the conditional long-run risk measure
(Êt+1 − Êt)

∑∞
s=0 δ

s(ct+1+s − ct+s) based on VAR. Factors that we consider are intermediary capital risk factor by He, Kelly, and Manela (2017),
Fama-French 7 factors (5 factors from Fama and French (2015) in addition to DEF and TERM), aggregate corporate bond excess returns, downside,
and credit rating factors. Reported are average returns of each tradable factor, the intercepts α and coefficient β with bootstrapped standard errors
computed with 5,000 replications. Average returns of factors and α are multiplied by 100 for ease of exposition.

Factors HKM SMB HML DEF TERM RMW CMA BOND-
MKT

DOWNSIDE CREDIT

Panel A: Regression of Other Factors on the Consumption-Mimicking Portfolio Returns
A1: CEX unconditional Long-run risk measure
Avg. 1.79 0.50 0.97 0.03 1.00 0.84 0.94 0.87 1.10 0.57
Returns (%) (0.33) (0.33) (0.28) (0.09) (0.25) (0.25) (0.19) (0.20) (0.28) (0.18)
α (%) -0.39 0.25 0.81 -0.32 0.43 1.08 0.97 -0.08 -0.12 -0.06

(0.26) (0.36) (0.29) (0.22) (0.48) (0.24) (0.22) (0.19) (0.33) (0.38)
β 3.22 0.38 0.24 0.52 0.84 -0.35 -0.05 1.40 1.72 0.93

(0.36) (0.15) (0.09) (0.26) (0.46) (0.11) (0.11) (0.15) (0.42) (0.44)
Adj. R2 0.59 0.02 0.00 0.16 0.08 0.02 0.00 0.52 0.30 0.16

A2: CEX conditional Long-run risk measure
Avg. 1.74 0.50 0.97 0.03 1.00 0.84 0.94 0.87 1.10 0.57
Returns (%) (0.36) (0.35) (0.30) (0.09) (0.27) (0.27) (0.21) (0.21) (0.30) (0.21)
α (%) -0.96 -0.14 0.84 -0.48 0.83 1.33 1.02 -0.10 -0.81 -0.66

(0.21) (0.36) (0.35) (0.21) (0.62) (0.35) (0.24) (0.25) (0.40) (0.42)
β 5.30 1.26 0.26 0.99 0.33 -0.95 -0.15 1.89 3.55 2.42

(0.40) (0.13) (0.19) (0.34) (0.88) (0.22) (0.12) (0.28) (0.61) (0.65)
Adj. R2 0.69 0.08 0.00 0.25 0.00 0.07 0.00 0.39 0.57 0.44

Panel B: Regression of the Consumption-Mimicking Portfolio Returns on Each of Other Factors
B1: CEX unconditional Long-run risk measure
α (%) 0.35 0.65 0.65 0.67 0.57 0.73 0.69 0.36 0.51 0.58

(0.11) (0.11) (0.1) (0.11) (0.11) (0.09) (0.11) (0.07) (0.14) (0.12)
β 0.18 0.05 0.03 0.32 0.10 -0.06 -0.01 0.37 0.18 0.17

(0.02) (0.03) (0.01) (0.06) (0.06) (0.06) (0.02) (0.03) (0.06) (0.04)
Adj. R2 0.59 0.02 0.00 0.16 0.08 0.02 0.00 0.52 0.30 0.16

B2: CEX conditional Long-run risk measure
α (%) 0.28 0.48 0.50 0.50 0.49 0.57 0.52 0.33 0.36 0.41

(0.03) (0.06) (0.05) (0.06) (0.07) (0.06) (0.06) (0.05) (0.05) (0.05)
β 0.13 0.07 0.01 0.25 0.02 -0.07 -0.02 0.21 0.16 0.18

(0.01) (0.02) (0.01) (0.05) (0.04) (0.03) (0.01) (0.04) (0.02) (0.02)
Adj. R2 0.69 0.08 0.00 0.25 0.00 0.07 0.00 0.39 0.57 0.44
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Table 12. Test Using Illiquidity Portfolios as Test Assets

This table reports GMM cross-sectional regression results using illiquidity portfolios as test assets: Ê[ri,t+1 −
rf,t] +

σ̂2(ri,t+1)
2 − σ̂2(rf,t)

2 = ζ + (γ − 1) ˆcov(
∑S−1
s=0 δ

s(ct+1+s − ct+s), ri,t+1 − rf,t) + ei where ri,t+1 is the
quarterly log return of an asset i, rf,t is the quarterly log rate of 30-day T-bill, δ = 0.951/4, ct is the log
consumption. The long-run consumption risk factor is measured by the discounted cumulative consumption
growth

∑S−1
s=0 δ

s(ct+1+s−ct+s) where S = 20 quarters for CEX and S = 8 quarters for NIPA. The column ‘CEX’
reports the result using the consumption growth of wealthy households defined as the top 30% of asset holders
from CEX data. The column ‘NIPA’ reports using the consumption growth of aggregate households from NIPA.
The quantity of risk is jointly estimated with parameters ζ and γ using GMM. Test assets are 5 Roll measure
of illiquidity-sorted portfolios, 5 age sorted portfolios, 5 issue amount sorted portfolios, and 5 noise factor
Hu, Pan, and Wang (2013) beta-sorted portfolios. Reported are the intercepts ζ and implied risk-aversion
coefficients γ with 95% confidence intervals for parameters, based on bootstrapping with 5,000 replications
in square brackets. The cross-sectional R̄2 is defined as 1− varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test
asset and R̂ei is the predicted average excess return of portfolio i. 95% confidence intervals for R̄2 are reported
in square brackets. The pricing error is measured by RMSE

RMSR where RMSE =
√

1
N

∑N
i=1(E(Rei )− R̂ei)2 and

RMSR =
√

1
N

∑N
i=1E(Rei )

2. Time period spans from March 1984 to December 2019 for CEX and from
February 1973 to December 2019 for NIPA. Unconditional pricing errors ζ are multiplied by 100 for ease of
exposition.

Data CEX NIPA

ζ (%) 0.46 1.29
[0.21 1.60] [0.47 1.48]

γ 27.9 -27.0
[-8.3 38.5] [-54.9 83.1]

R̄2 0.82 0.33
[0.02 0.92] [0.00 0.78]

RMSE
RMSR 0.12 0.29

Number of assets 20 20
Number of asset-month 5,940 7,930
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Panel A. CEX Wealthy Household Consumption (March 1984 - December 2019)
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Panel B. NIPA Aggregate Consumption (February 1973 - December 2019)
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Figure 1. Average Bond Returns and Covariances Between Bond Returns and Con-
sumption Growth
This figure plots the average bond excess returns (quarterly) against covariances of excess returns with the
short-run (ct+1 − ct) or long-run consumption growth rate (

∑S−1
s=0 δ

s(ct+1+s − ct+s), where S = 20 quarters
for CEX and S = 8 quarters for NIPA). Dotted line is from an OLS regression.
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Figure 2. Risk-Aversion Coefficients by Each Portfolio Group
This figure plots the implied risk-aversion coefficients from GMM cross-sectional regressions for each portfolio
group with two standard error bounds.
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Panel B: 5 Downside sorted portfolios
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Panel C: 5 Maturity sorted portfolios
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Panel E: 5 Intermediary beta sorted portfolios
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Panel F: 5 Idiosyncratic volatility sorted portfolios
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Panel G: 5 Long-term Reversal portfolios
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Panel H: 40 All portfolios
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Figure 3. Fitted and Average Returns of Bonds by Long-Run Risk Using Wealthy House-
holds’ Consumption
This figure plots the cross-section of actual average bond excess returns against the predicted average bond
excess returns by the long-run consumption risk using wealthy households’ consumption and the GMM esti-
mation.
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Panel F: 5 Idiosyncratic volatility sorted portfolios
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Panel G: 5 Long-term Reversal portfolios
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Figure 4. Fitted and Average Returns of Bonds by Long-Run Risk Using Aggregate
Consumption
This figure plots the cross-section of actual average bond excess returns against the predicted average bond
excess returns by the long-run consumption risk using NIPA aggregate consumption and the GMM estimation.
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This appendix contains additional results and tables that were referred to in the article.

The body of the appendix consists of following sections:

I Detailed description of the data used in the paper

II Analysis on the behavior of consumption growth

III Theoretical motivation: calibrating the long-run risk model to corporate bond risk pre-

miums

IV Identification of bondholders

V Alternative GMM estimates

VI Two-pass regressions on betas and price of risk estimates

VII Estimation results for VAR

Furthermore, the appendix contains a few tables that presents additional results mentioned

in the paper.

I. Data

In this Appendix section, we describe the procedure to select data sets from the original

source and remove potential errors.

I.A Lehman Brothers Database

The Lehman Brothers database provides monthly quotes for flat prices of corporate

bonds and other bonds from January 1973 to March 1998. To select corporate bonds,

we use the industry classification assigned by Lehman Brothers. Specifically, we use bonds

classified as “industrial”, “telephone utility”, “electric utility”, “utility (other)”, “finance”,26

and remove the rest because bonds in the remainders are issued by government entities.

After the removal of non-corporate bonds, we find that there are no observations in August

1975 and December 1984, and thus we do not compute monthly returns in August and

September 1975, December 1984, and January 1985.

26These industries correspond to the industry code of 3,4,5,6,7, respectively.
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The database does not include the frequency or exact dates of coupon payments, but

does include accrued interest at the end of a month as well as monthly returns. We calcu-

lated ourselves month-end accrued interest assuming coupon payments are semi-annual,

and find that correlation between our values and those in the database is 0.99. Thus, for

consistency, we use monthly returns calculated ourselves as in Eq. (1).

The database includes the indicator for the observation being quote or matrix prices, and

for the bonds being callable or not. As shown in Chordia et al. (2017), these distinctions

do not lead to a significant difference in cross-sectional return predictability, and thus we

include observations for matrix prices and callable bonds.

Lehman Brothers data also provides information on bond characteristics, such as amount

outstanding, credit rating, offering, and maturity date.

I.B NAIC

NAIC data set includes transaction data of corporate bonds transacted by insurance

companies from January 1994 to December 2014. The data field consists of transaction

date, bond’s CUSIP, transaction price, and volume. First, we construct daily price data by

taking the volume-weighted average of all transactions. We do not impose cutoff based on

transaction volume because we know a priori that these transactions are all institutional.

To construct monthly returns, we use the last trading date in the last 5 business days in

a month as a month-end price observation for the bond. To calculate monthly returns, we

consider two cases following Bai, Bali, and Wen (2019). First, a monthly return in month t

can reflect a change from the month-end price in t−1 to the month-end price in t. If such a

return is missing, we then consider the second case in which a monthly return is measured

from the beginning of a month in t+1 to the end of month in t+1. The beginning of month

price is the first daily price in the first 5 business days in a month. If a return in the second

case is also missing, then we treat a return in the month as missing.

To select the subsample of corporate bonds in NAIC that satisfy our selection criteria,

we merge NAIC transaction data to Mergent FISD data. We use the information regarding

coupons in FISD to calculate month-end accrued interest and a return as in Eq. (1).
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I.C DataStream

DataStream provides a monthly quote for a clean price of corporate bonds from January

1990 to September 2011. We find that the quotes for some bonds are extremely stale, and

the clean price does not change for a prolonged time. Thus, we delete observations if the

clean price does not change for three months or more.

After removing stale prices, we select a subsample of corporate bonds that we can merge

to the Mergent FISD data as we do for the NAIC data set. We calculate accrued interest and

monthly returns as in Eq.(1).

I.D TRACE

Enhanced TRACE provides all transactions data for corporate bonds from July 2002 to

December 2019. The end of the sample period is defined by the availability of consump-

tion data. Following Bessembinder et al. (2008), we use transactions with volume above

$100,000 for more accurate information and calculate the volume-weighted average price

on a day for the daily price data. We follow Dick-Nielsen (2009) to clean the data, remov-

ing cancelled transactions, and use corrected prices. Furthermore, we remove transactions

with a when-issued condition, those with a special trading condition, locked-in trades, trade

where the price includes commissions to dealers.

The procedure to transform daily price data to monthly returns is the same as we do

for NAIC data. By merging TRACE data to Mergent FISD, we select bonds that satisfy our

selection criteria.

I.E Mergent FISD

Mergent FISD provides data on (mostly) static bond characteristics. Thus, we merge

Mergent FISD to NAIC, DataStream, and TRACE to augment the information other than

flat prices, as well as to select a subsample of bonds that satisfy our selection criteria.

First, we describe the selection criteria for bonds in our analysis. We use a corporate

bond (bond_type=‘CDEB’or‘CMTN’or‘CMTZ’) with fixed coupons (coupon_type=‘F’), which

is not convertible (convertible=‘N’), not an asset-backed security (asset_backed=‘N’),

not Yankee bond (yankee=‘N’), not issued by Canadian issuers (canadian=‘N’), U.S. dol-
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lar denominated (foreign_currency=‘N’), not puttable (putable=‘N’), and not a junior

bond (security_level~=‘JUN’,‘SUB’or‘JUNS’).

Next, for bonds that meet our selection criteria, we obtain information for bond char-

acteristics such as annual coupon rates, frequency of coupon payments, maturity date, of-

fering date, the historical credit rating, and the historical amount outstanding. For bonds

with missing amount outstanding information in the file, we set the amount outstanding

equal to the face value at issue.

I.F Combined Data

After calculating monthly returns for each data set, we combine these four into one data

set. When there are overlaps in the data sets, we prioritize in the following order: i) Lehman

Brothers, ii) TRACE, iii) NAIC, and iv) DataStream. We then remove returns if they involve

a monthly price below $5 or above $1,000 for the par value of $100 or if a bond’s time to

maturity is less than a year.

After the data sets are combined, we have 2,297,675 bond-month observations for

38,955 bonds and 7,995 issuers (as identified by the first six-digit CUSIP). Table IA7 re-

ports the summary statistics of monthly bond returns in percentage form for all data sets

as well as each individual data set. Table IA8 provides the summary statistics of the 7

portfolios.

I.G Consumer expenditure

In this subsection, we describe the Consumer Expenditure Survey (CEX) and our data

selection procedure. The CEX is a nationwide household survey conducted by the U.S. Bu-

reau of Labor Statistics (BLS), designed to provide detailed data on spending, income, and

demographic features of consumers as well as their asset holding information.27 In terms of

interview frequency, a sample household is interviewed every three months over five times.

Therefore, one can observe the quarterly consumption growth for each household. The BLS

conducts the survey on a monthly basis by introducing new households and dropping old

households who finish the last interview each month. Thus, we have quarterly consumption

27The data is publicly available at https://www.bls.gov/cex/.
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growth at the monthly frequency with different sets of households each month.

The consumption in our study is nondurables and services from the CEX consumption

categories. Following prior studies (e.g., Attanasio and Weber, 1995; Vissing-Jørgensen,

2002; Malloy, Moskowitz, and Vissing-Jørgensen, 2009), we exclude housing expenses (but

not costs of household operations), medical care costs, and education costs since these cost

items have significant durable components. We also exclude transportation costs which

include vehicles and related costs (but not gasoline, oil, and public transportation) to match

the definition of nondurables and services in NIPA. All nominal values are deflated using

the 2012 value of USD. To adjust the seasonality of consumption, we regress the change in

real per capita household consumption on a set of seasonal dummies and use the residual

as our quarterly consumption growth measure.

We apply similar sampling procedures as in Malloy, Moskowitz, and Vissing-Jørgensen

(2009) as follows. We compute the quarterly consumption growth ratio Ci,t+1/Ci,t for each

household and remove extreme outliers where the consumption growth ratio is less than 0.2

or above 5.0. Moreover, nonurban households and households residing in student housing

are dropped. There was a change in household identification numbers in the first quarter in-

terview of 1986. While Malloy, Moskowitz, and Vissing-Jørgensen (2009) dropped sample

households which did not finish the fifth interview before the change, we match two differ-

ent identification numbers by exploiting two sets28 of 1986Q1 interview files where one has

the old identification numbers and the other has the new. To be specific, if two households

from two different sets of interviews have the exact same answers for all 17 questions29 in

the same month, we identify them as the same households. As a result, we match identifica-

tion numbers of 1,267 households out of 1,609 households who did not finish the interview

before ID changes. To check the validity of this matching strategy, we apply the same rule

28CEX adds a quarterly Interview Survey files that appear twice, once as the fifth and final quarter of the
previous year and once as the first quarter of the new year. They denote the final quarter of the previous year
with “X” to indicate that this file differs from the same quarterly file of the previous calendar year release,
because it uses the methodology for the new year.

29We choose the following questions which can possibly have various numeric or categorical answers and
also all households fully answered: composition of earners, region, income class, building type, number of
males age 16 and over, number of females age 16 and over, number of males age 2 through 15, number of
females age 2 through 15, number of members under age 2, ethnic origin, family type, marital status, housing
tenure, age, education, race, and interview number.
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to interview files of different years where there are no ID number changes, we confirm that

once we find two households from two sets of interviews that have the same answers to

these questions in the same month, they are indeed the same households. Our final sample

of households is 807,991 household-month observations with 281,677 unique households,

spanning from March 1984 to December 2019.

II. Behavior of consumption shocks

In this section, we study the properties of various consumption risk factors. In particular,

we aim to compare the wealthy households’ long-run consumption growth with bondhold-

ers’ consumption growth (Internet Appendix IV provides the details for this measure) and

the NIPA aggregate consumption growth. We start by plotting the three-month moving

averages of 20-quarter consumption growth of wealthy households, bondholders, and the

1-quarter and 20-quarter consumption growth NIPA data in Figure A.3. The plot for 20-

quarter growth is forward-looking in the sense that the data point in (say) 2005Q1 is the

cumulative growth from 2005Q1 to 2009Q4. From the plot, we can see that the wealthy

households’ and bondholders’ consumption is much more volatile than NIPA consumption.

In contrast, the NIPA 20-quarter growth is more smooth and does not necessarily go down

during recessions.

To quantify the cyclicality of consumption growth, we run a regression of consumption

growth on various macroeconomic variables

19∑
s=0

δs∆ct+s+1 = b0 + b1xt+1 + ut+s+1,

where xt+1 includes excess returns on the bond market, stock market, changes in macroe-

conomic uncertainty of Jurado, Ludvigson, and Ng (2015), NBER recession dummies, term

spreads, default spreads and the dividend-price ratio. The standard errors are Newey-West

adjusted (with lags equal to twice the number of overlapping months) to account for over-

lapping observations.

Table IA9 , which is added to the paper as Table IA9, reports the estimated slope coeffi-

cient and the regression R-squared. Comparing the slope coefficients b1 across consumption
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series, the bondholders’ and wealthy households’ consumption tend to be more sensitive

to uncertainty- and default-related news than NIPA consumption. For example, when de-

fault spreads increase by one percentage point, wealthy households’ long-run consumption,

bondholders’ long-run consumption, and NIPA long-run consumption decrease 1.00, 2.49,

and 0.86 percentage points, respectively. The sensitivity to macroeconomic uncertainty,

returns on the bond market, and stock returns have the same pattern although the coeffi-

cient on the stock returns is insignificant due to large volatility. It is interesting to note that

the sensitivity of wealthy households and bondholders’ consumption to the NBER reces-

sion dummy is not higher than the NIPA long-run consumption. However, this is expected

because GDP growth (to which NIPA consumption contributes) is used to judge NBER reces-

sions. As we show below, once we condition consumption on the same set of state variables,

wealthy households’ and bondholders’ consumption becomes more cyclical than NIPA con-

sumption. In sum, the better performance of the wealthy households and bondholders’

consumption stems from the better link between uncertainty and default risk.

Next, we turn to VAR-implied expected consumption growth. We study the expected

consumption growth of wealthy households implied from the VAR used in Section 3.3. For

comparison, we use the same set of state variables in the VAR and estimate the forecasting

regression in (3) and (4) using the NIPA aggregate consumption and bondholders’ con-

sumption. Because the set of state variables in xt is fixed, their persistence encoded in

matrix G is held constant across three consumption series.

In Figure A.4, we plot the estimated expected consumption growth for wealthy house-

holds, bondholders, andNIPA aggregate. We see that the VAR-based expectations of wealthy

households’ and bondholders’ consumption are volatile and appear less persistent than the

NIPA counterpart. To see what this finding implies for the asset prices, we rewrite the

stochastic discount factor in the model:

st+1 = (1− γ)λ(δ)wt+1,

= (1− γ)(η0 + δUc(I − δG)−1H)wt+1.

In the long-run risk model of Bansal and Yaron (2004), shocks to long-run aggregate con-
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sumption growth are highly volatile despite the low predictability of consumption growth

because of the persistence of the state variables. In the equation above, for the NIPA aggre-

gate consumption, the predictability Uc is close to zero but eigenvalues ofG are close to one,

which makes the volatility of the shock Uc(I − δG)−1H relatively large. Thus, persistence

is the key for the NIPA consumption-based long-run risk model to work.

In our setup, (I − δG)−1H is held fixed across three consumption series. Thus, despite

the apparent difference in volatility of expected consumption growth, the persistence of

the state variables is the same by construction. Instead, the difference across three series

entirely comes from Uc, or how predictable they are with the same set of state variables.

Because the magnitude of the elements in Uc is larger for wealthy households’ and bond-

holders’ consumption than for aggregate consumption, the volatility of the first two shocks

is greater than the last ones.

To see this point, Panel A of Table IA10 reports the estimates of Uc for wealthy house-

holds’, bondholders’ and aggregate consumption. The magnitude of the elements of Uc is

much larger for wealthy households’ and bondholders’ consumption than the NIPA aggre-

gate consumption. For the first lag, wealthy households’ and bondholders’ consumption

are more than ten times as sensitive to F6 (the factor capturing second-difference of gen-

eral price levels) and F8 (the factor capturing stock prices, such as the S&P500 index) as

aggregate consumption is. In addition, for the second lag, these two consumption series

are much more sensitive to F2 (the factor capturing labor market conditions, such as total

non-farm payrolls).

Panel B of Table IA10 reports the product of the standard deviation of the principal com-

ponents and the regression slope coefficients. Since the standard deviation for F8 (0.111)

is somewhat lower than the other two (σ(F2) = 0.283, σ(F6) = 0.163), their contribution

is somewhat attenuated. Overall, wealthy households’ and bondholders’ consumption are

more predictable than NIPA consumption, in the sense that their predictable components

vary more significantly than that of aggregate consumption. This predictability, rather than

persistence, is the reason why the model works with a relatively low risk aversion.

Lastly, we study the cyclicality of expected consumption growth. In Table IA11, we

regress shocks to the VAR-implied long-run consumption growth εc,t+1+δUc(I−δG)−1εx,t+1
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on the aggregate stock and bond market returns as well as changes in macroeconomic

uncertainty. In addition, we regress the level of expected consumption growth, Et[ct+1−ct],

on time-t variables that capture business cycle.

The first three columns of Table IA11 report the estimates for shocks to the long-run con-

sumption growth. We find that the estimated slope coefficients are greater in magnitude

for wealthy households’ and bondholders’ consumption than for NIPA consumption. How-

ever, since the principal components selected by the AIC criteria do not include uncertainty

or bond-market information, the coefficients for the bond market returns and uncertainty

shocks are insignificant.

The last four columns of Table IA11 report the univariate regression of the level of ex-

pected consumption growth on the dummy variable for NBER recessions, term spreads,

default spreads, and the dividend-price ratio. We find that on all four business cycle prox-

ies, the expected consumption growth for wealthy households and bondholders loads sig-

nificantly negatively. These results show that the expected consumption growth for these

households declines significantly during recessions or when the term spreads, the default

spreads, and the dividend-price ratio is high. The expected growth for NIPA aggregate con-

sumption growth is also negatively correlated with these variables, but the slope coefficients

are less than a tenth in magnitude of those for wealthy households. In sum, expectations

for wealthy households’ and bondholders’ consumption growth are more cyclical than the

NIPA aggregate consumption growth. When conditioned on a relatively small set of state

variables, the link between the VAR-based measure and uncertainty is attenuated. There-

fore, we explicitly include uncertainty shocks in the VAR and report the results in Internet

Appendix VII.

III. Theoretical motivation

We have provided empirical evidence that a one-factor model with long-run consump-

tion growth explains the risk premiums on corporate bond portfolios. In this section, we

examine whether our empirical findings are supported by theory. Recent equilibrium-based

structural models of credit risk (e.g. Bhamra, Kuehn, and Strebulaev, 2010a,b; Chen, 2010;

Elkamhi and Salerno, 2020) show that the long-run risk combined with recursive prefer-
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ences well explains credit spreads. They do so by generating a large and negative covariance

between the pricing kernel and cash flow. Since credit spreads contain at least two com-

ponents which are expected losses and bond risk premiums, this finding in the literature

suggests that the long-run risk may have the ability to explain bond risk premiums as well.

While those models study credit spreads, in this section, we focus on the bond risk premi-

ums in particular. We examine the contribution of the long-run risk to the total bond risk

premiums to motivate our choice of the long-run risk model. The model of Bhamra, Kuehn,

and Strebulaev (2010b) is a natural choice for this exercise because, in their model, the

long-run risk is incorporated into a structural model in a parsimonious way through two

states regime change of the economy where one can identify the marginal effect of the

long-run risk. Specifically, we quantify the relative importance of the long-run risk for the

bond risk premiums. Our next calibration result shows that the long-run risk is responsible

for 94% to 102% of the bond risk premiums. This finding lends theoretical support to our

choice of the long-run risk model to price corporate bonds.

III.A Model

We adapt the model developed by Bhamra, Kuehn, and Strebulaev (2010b). The key

assumptions of the model are the time-varying first and second moments of corporate earn-

ings and consumption growth combined with recursive preferences. The state of the econ-

omy slowly changes according to a two-state Markov chain, and the state determines the

level of the first and second moments of earnings and consumption growth. In this setup,

the long-run consumption risk arises from the macroeconomic uncertainty together with a

representative agent’s preference for the early resolution of uncertainty that stems from a

higher risk aversion than the reciprocal of the elasticity of intertemporal substitution (EIS).

We provide details on the model in the following subsections.

III.A.1 Aggregate consumption and firm earnings

The economy is populated by a representative agent and a representative firm. The

agent provides capital to the firm by investing in equity and bond and also consumes the

firm’s output.
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The dynamics of aggregate consumption Ct is exogenously given by

dCt
Ct

= gνtdt+ σC,νtdBC,t ∀νt ∈ {1, 2} (III.1)

where gνt and σC,νt are the state-dependent expected consumption growth rate and con-

sumption growth volatility, respectively. dBC,t is a standard Brownian motion shock to

consumption.

The dynamics of aggregate earnings Xt is given by

dXt

Xt

= θνtdt+ σidXdB
id
X,t + σsX,νtdB

s
X,t ∀νt ∈ {1, 2} (III.2)

where θνt is the state-dependent expected earnings growth rate, and σidX and σX,νt are the

idiosyncratic and systematic volatilities of the firm’s earnings growth rate, respectively. The

systematic earnings shock dBs
X,t is correlated with aggregate consumption shock: That is,

dBC,tdB
s
X,t = ρXCdt. In this economy, the long-run risk arises from slowly time-varying

macroeconomic conditions. The first and second moments of consumption and earnings

growth vary over time with persistent changes in the state of the economy. The state

switches according to a two-state Markov chain defined by λνt, which is the probability

per unit time of the economy leaving state νt.

III.A.2 Preferences

The representative agent has Epstein-Zin-Weil preferences. This is to ensure the long-run

risk is priced by separating risk aversion from the elasticity of intertemporal substitution.

Consequently, the representative agent’s state-price density is given by

πt = (βe−βt)
1−γ
1− 1

ψ C−γt (pC,te
∫ t
0 p
−1
C,sds)

−
γ− 1

ψ

1− 1
ψ (III.3)

where β is the rate of time preference, γ is the coefficient of relative risk aversion (RRA), ψ

is the elasticity of intertemporal substitution (EIS), and pC,t is the price-consumption ratio.

The representative agent cares about the rate of news arrival given by p = λ1 + λ2. The

long-run probability of being in each state is given by (f1, f2) = (λ2/p, λ1/p).
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III.A.3 Asset prices

The debt value Bνt is the present value of a perpetual coupon stream c until a default

occurs at a random stopping time τD plus the present value of the recovered firm asset

liquidation where ανt is the state-dependent asset recovery rate.

Bνt = Et[

∫ τD

t

πs
πt
cds|νt] + Et[

πτD
πt
ατDAτD |νt] (III.4)

=
c

rP,νt
(1−

2∑
νD=1

lD,νt,νDqD,νt,νD) ∀νt ∈ {1, 2}

where rP,νt is the discount rate for a riskless perpetuity, lD,νt,νD is the loss ratio, and qD,νt,νD
is the Arrow-Debreu default claim.

The credit spread is given by

sνt =
c

Bνt

− rP,νt = rp,νt

∑2
νD=1 lD,νt,νDqD,νt,νD

1−
∑2

νD=1 lD,νt,νDqD,νt,νD
(III.5)

The conditional levered equity risk premium in state νt is

µR,νt − rνt = γρXCσ
B,s
R,νt

σC,νt +Πνt ∀νt ∈ {1, 2} (III.6)

where σB,sR,νt
=

∂lnSνt
∂lnXt

σsX,νt is the systematic volatility of stock returns caused by Brownian

shocks. The first term is the risk compensation associated with the short-run risk. The

second term is the long-run risk component (jump risk premium) which stems from un-

certainty in states, which is given by (Π1, Π2) = ((1 − ω−1)(S2

S1
− 1)λ1, (1 − ω)(S1

S2
− 1)λ2).

ω measures the size of the jump in the state-price density when the economy shifts from

state 2 to state 1: ω = πt
πt−
|νt−=2,νt=1. Its size depends on the representative’s preference for

resolving intertemporal risk: ω > 1 (ω < 1) if γ > 1/ψ (γ < 1/ψ) and ω = 1 if γ = 1/ψ. If

macroeconomic conditions do not vary, then intertemporal risk is eliminated. In this case,

ω = 1 and therefore the long-run risk component becomes zero i.e., Πνt = 0.

Stock value Sνt is the after-tax discounted value of future earnings Xt less coupon pay-

ment until bankruptcy.
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Sνt = (1− η)Et[

∫ τD

t

πs
πt

(Xs − c)ds|νt] (III.7)

= Aνt(Xt)− (1− η)
c

rP,νt
+

2∑
νD=1

qD,νt,νD [(1− η)
c

rP,νD
− AνD(XD,νD)] ∀νt ∈ {1, 2}

where Aνt(Xt) = (1−η)Xt
rA,νt

is the liquidation value in state νt

III.B Calibration

This subsection presents the calibration of the model. We use the same parameter val-

ues as in Bhamra, Kuehn, and Strebulaev (2010b). They use aggregate U.S. consumption

and corporate earnings data from 1947Q1 to 2005Q4 to estimate parameter values. Table

IA12 summarizes parameter values for our calibration. Although the model of Bhamra,

Kuehn, and Strebulaev (2010b) allows for time-varying volatility of consumption growth

and earnings growth, we impose constant volatility in order to be consistent with the model

of Hansen, Heaton, and Li (2008) and Malloy, Moskowitz, and Vissing-Jørgensen (2009),

which we build upon for our empirical analysis.30 For the same reason, as in these papers

and our empirical setting, we set the EIS to be one. As for the coefficient of relative risk

aversion, we let risk aversion equal 10 as in Bansal and Yaron (2004) and Bhamra, Kuehn,

and Strebulaev (2010b). Setting the coefficient of risk aversion greater than the reciprocal

of the EIS ensures that the representative agent has a preference for early resolution of

uncertainty, and thus she is averse to long-run risk.

Ourmain focus is to assess the relative importance of the long-run risk component for the

bond risk premiums. To this end, we first measure total risk premiums with both short- and

long-run risk components with state-dependent expected consumption and earnings growth

rate. Next, we obtain the short-run component by eliminating the macroeconomic uncer-

tainty. Finally, we quantify the long-run risk component by subtracting the short-run risk

component from the baseline case where both short- and long-run risks are present. More

specifically, to eliminate the macroeconomic uncertainty, we impose the state-independent

30To impose constant volatility, we fix the volatility of consumption and earnings growth to the long-run
average of state-dependent volatilities, which are given in Bhamra, Kuehn, and Strebulaev (2010b).

13

Electronic copy available at: https://ssrn.com/abstract=3669068



expected consumption and earnings growth rate.31 To measure the bond risk premiums,

we subtract expected loss spreads (spreads computed using P default probabilities as in Du,

Elkamhi, and Ericsson (2019)) from total spreads.

First of all, our model calibration generates empirically observed levels of equity risk

premium of 2.69%32 and credit spread of 71 basis points, for a market leverage ratio of

40%. Also, the bond risk premium is 37 basis points and the expected loss is 34 basis

points, which reasonably matches the empirical counterpart. The total bond risk premium

of 37 basis points is decomposed into 35 basis points that stem from the long-run risk com-

ponent and the remaining 2 basis points from the short-run risk component. Therefore,

the long-run risk component accounts for nearly a hundred percent of the risk premiums.

Next, in order to study how the relative importance of the long-run risk component de-

pends on the level of the leverage ratio, we exogenously vary the leverage ratio from 10%

to 80%. Panel A of Figure A.1 shows the result. The contribution of the long-run risk to

bond risk premiums ranges from 94% to 102%. Hence, the long-run risk explains nearly a

hundred percent of bond risk premiums regardless of the level of the leverage ratio. More-

over, although both short- and long-run risk components increase with the leverage ratio

due to higher default risk, the short-run risk component increases relatively more than the

long-run risk component. Hence, the long-run risk plays a larger role in explaining the

bond risk premiums when the leverage ratio is low, although the proportion of the long-run

component changes negligibly across different leverage ratios. This is consistent with the

recent equilibrium-based structural models (e.g. Bhamra, Kuehn, and Strebulaev, 2010a,b;

Chen, 2010; Elkamhi and Salerno, 2020) showing that the long-run risk can generate a

large quantity of risk to explain the credit spread puzzle, especially for high credit quality

firms where the puzzle is more severe.

We do the same calibration exercise for equity and find that the contribution of the

long-run risk for equity is always lower than its contribution for bonds, ranging from 88%

and 90%. This result provides a rationale for why the long-run risk is more important for

corporate bonds than equity from the theoretical perspective. The result is shown in Figure

31We confirm that in this case, the size of the jump in the state-price density in terms of ratio equals one.
32This is the same as 2.69% in Bhamra, Kuehn, and Strebulaev (2010b) for average firms with the no-

refinancing and default case.
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A.2.

To gain further insight into the importance of the long-run risk for bond risk premiums,

we also conduct the comparative static analysis in terms of the convergence rate to long

run. A higher convergence rate indicates faster news arrival, which implies a lower degree

of persistence, and therefore lower long-run risk. We vary the convergence rate from 0.5646

to 0.9646 (0.7646 for the baseline) with the fixed leverage ratio of 40%. Panel B of Figure

A.1 shows that the long-run risk component decreases with the convergence rate, and also,

not surprisingly, the relative importance of the long-run risk component decreases from

96% to 92% due to a lower long-run risk. However, throughout the range of convergence

rate that we consider, the long-run risk always contributes more than 90%. Finally, we also

vary the coefficient of risk aversion from 5 to 15 with the fixed leverage ratio of 40% and

assess the importance of the long-run risk. Panel C of Figure A.1 shows that the contribution

of the long-run risk component to the bond risk premiums is not sensitive to the levels of

risk aversion, ranging from 93% to 95%. These comparative static analysis results illustrate

the robustness of the long-run risk in generating large bond risk premiums.

Overall, our finding theoretically highlights the importance of the long-run aggregate

consumption risk not only for credit spreads, which are well-known in the literature, but

also for the bond risk premiums as well. This finding is robust to different levels of the

leverage ratio, convergence rate, and risk aversion. This theoretical evidence provides a

strong justification for why the long-run risk model is a natural choice to explain the cross-

sectional returns of corporate bonds.

IV. Measuring bondholders consumption

In this section, we explain details on howwe identify bondholders in the CEX data based

on the Survey of Consumer Finances (SCF). To identify likely bondholders in the CEX, we

employ the imputation procedure widely used in the literature (e.g., Attanasio, Banks, and

Tanner, 2002;Malloy, Moskowitz, and Vissing-Jørgensen, 2009; Elkamhi and Jo, 2019; Cole

et al., 2020; Gaudio, Petrella, and Santoro, 2021). Specifically, we run a Probit regression of

corporate bond ownership in the SCF data on households characteristics that are available in

the CEX data as well. Next, we apply the estimated coefficients from the Probit regression
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to the CEX households to calculate the probability of corporate bond ownership for CEX

households.

Table IA13 presents the descriptive statistics of non-corporate bondholders (Panel A),

corporate bondholders (Panel B), non-equityholders (Panel C), equityholders that account

for indirect holdings through retirement accounts (Panel D), and total respondents (Panel

E) in SCF using 1992, 1995, 1998, 2001, 2004, 2007, 2010, 2013, 2016, and 2019 waves.33

Corporate bond holders are defined as respondents who directly or indirectly hold corpo-

rate bonds through funds. Wealth is the value of checking, savings, mutual funds, stocks,

and bonds. Income is the total household 12-month income before taxes. Dividend income

is the total family annual dividend income. All dollar values are in 2019 dollars. Com-

paring Panel A with Panel B shows that corporate bondholders are generally much wealth-

ier than non-corporate bondholders: The median wealth level of corporate bondholders

is $589,877.8 versus $8,477.4 for non-corporate bondholders. Moreover, corporate bond-

holders have much higher incomes, are older, more educated, more likely to be white, have

more kids, more likely to be married, and male. We exploit these stark differences in house-

holds characteristics, wealth, and income level between the two groups and run a Probit

regression. Comparing Panel B and D shows that corporate bondholders’ characteristics are

different from equityholders. Corporate bondholders are wealthier and own an even higher

value of stocks than equityholders.

Table IA14 presents the result from the Probit regression of households’ corporate bond

ownership on households characteristics. Note that for variables in dollar values, we take a

ratio of the variable to the household’s labor income since ratios canmitigate ameasurement

error in the level (e.g. Aguiar and Bils, 2015). Next, we define bondholders as households

that have at least 10% probability of holding corporate bonds based on our estimates among

asset holders. We use the threshold of 10% of owning corporate bonds since corporate

bonds are not widely held by households. Indeed, the SCF data show that only 5.3% of

households hold corporate bonds. Therefore, increasing the threshold results in a much

lower number of samples and nosier estimates of bondholders’ consumption.

33We start with the 1992 wave since previous waves do not distinguish corporate bonds from foreign bonds.
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V. Estimates using reverse regressions

A consistent estimator of the risk-aversion coefficient γ can also be obtained by running

the cross-sectional regression in (17) in reverse where long-run consumption risk is placed

on the left-hand side:

σ̂i,c = η +
1

γ − 1

(
Ê[ri,t+1 − rf,t] +

σ̂2(ri,t+1)

2
− σ̂2(rf,t)

2

)
+ ui. (V.1)

Eq (17) and (V.1) generally yield different estimates for γ in sample, and thus we check if

the estimated risk aversion does not depend on our choice of estimation procedure.

Reverse regression results in Table IA15 show that the estimated γ is lower for S above

16 than it is for S = 1 with this alternative set of estimates for CEX consumption, confirming

the main results. The point estimates for γ are somewhat greater than the main results,

but they remain roughly in the same ballpark with γ = 19 with S = 20, and the confidence

interval includes the point estimate in the main results (γ = 15.4). Therefore, our findings

are robust to alternative estimation methods for model parameters.

VI. Two-pass regression

The risk-aversion coefficient γ is intuitive and easy to compare with the literature that

calibrates the consumption-based asset pricing model. However, we cannot compare this

with factor risk premiums associated with reduced-form factor models such as Bai, Bali,

and Wen (2019). To estimate the price of the long-run risk, we employ standard two-pass

regressions. In the first-stage time-series regression, we regress quarterly excess returns

ri,t+1 − rf,t on the long-run consumption risk factor using the 20-quarter cumulative con-

sumption growth of wealthy households
∑19

s=0 δ
s(ct+1+s − ct+s).

ri,t+1 − rf,t = ai + βi

(
19∑
s=0

δs(ct+1+s − ct+s)

)
+ up,t+1. (VI.1)
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In the second-stage cross-sectional regression, average excess returnsE[ri,t+1−rf,t]+σ2(ri,t+1)

2
−

σ2(rf,t)

2
are regressed on estimated betas β̂i cross-sectionally,

E[ri,t+1 − rf,t] +
σ2(ri,t+1)

2
− σ2(rf,t)

2
= λ0 + λ1β̂i + αi. (VI.2)

As in the GMM estimates above, we compute standard errors by bootstrapping months

with 5,000 replications, which corrects for cross-sectional correlation in error terms as well

as the first-stage estimation errors since the re-sampled data is used for both the first- and

second-stage estimation. The estimated price of risk λ̂1 measures the risk premium for an

asset that has β = 1.

Table IA16 presents the price of risk based on the two-pass regressions in (VI.1) and

(VI.2) using the discounted 20-quarter cumulative consumption growth as a risk factor.

The estimated risk premium using all 40 portfolios is 11% per quarter which translates

into 3.67% per month, which is statistically significantly different from zero as indicated by

the 95% confidence interval. This estimate of the price of risk is far greater than the risk

premiums on the corporate bond market portfolio of 0.39% and premiums on downside

risk factor of 0.70% reported in Bai, Bali, and Wen (2019). This large price of risk is due to

the high volatility of wealthy household consumption growth. In Table IA8, the volatility of

quarterly consumption risk is above 8%, which is much higher than that of bond portfolio

returns. Thus, a hypothetical security with β = 1 is much riskier than bond portfolios used

in the literature.

The estimates for λ1 for each sub-sample range from 9% to 27% per quarter, and the

95% confidence intervals for all of these estimates contain the full sample estimates of

11%. The cross-sectional R̄2 is 0.80 with a tight 95-percent confidence interval ranging

from 0.26 to 0.90, suggesting a good fit of the model. Overall, these results suggest that

the estimated risk premiums are consistent across the seven sets of test assets that we use,

and the long-run risk is a priced factor in the cross-section of corporate bonds.

Table IA17 reports the two-pass regressions using shocks to expectation for the long-run

consumption growth as a risk factor. We find that the estimated price of risk using all 40

portfolios is 12% per quarter, very similar but slightly higher than the price of risk of 11% per
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quarter in Table IA16 using unconditional long-run consumption growth. This difference is

driven by lower correlations of shocks to expectation for the long-run consumption growth

with asset returns than those of unconditional long-run consumption growth, which lower

betas and raise the price of risk. As before, the estimated price of risk levels are consistent

across test assets, demonstrating the consistent pricing performance of the long-run risk

model for corporate bonds.

Table IA18 presents the results using NIPA aggregate consumption growth cumulated

over 8 quarters. Even though estimated γ is greater for this factor, it is less volatile and thus

the estimated price of risk is less than Table IA18.

VII. VAR estimation for the general EIS case

In this Appendix section, we discuss our VAR estimation for the general case where EIS

is not equal to one. For this exercise, we rely on the stochastic discount factor for the long-

run risk model with Epstein-Zin utility derived in Hansen et al. (2007), Hansen, Heaton,

and Li (2008) as follows. The log consumption evolves according to:

ct+1 − ct = µc + Ucxt + η0wt+1 (VII.1)

where xt is a state vector representing a persistent predictable component of consumption

growth which evolves as:

xt+1 = Gxt +Hwt+1 (VII.2)

The first-order expansion of the logarithm of the stochastic discount factor without constant

terms and ‘ct+1 − ct’ term that do not materially affect our result is

st+1 ≈ (1− γ)λ(δ)wt+1 +

(
1

ρ
− 1

)(
1

2
w′t+1Θ0wt+1 + w′t+1Θ1xt + θ1xt + θ2wt+1

)
(VII.3)
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where

λ(δ) = η0 + δUc(I − δG)−1H

Θ0 = (γ − 1)H ′ΩH

Θ1 = (γ − 1)H ′ΩG

θ1 = −Uc + (γ − 1)2λ(δ)H ′ΩG

θ2 = −(1− γ)ω′H + U ′vH

Ω =
1− δ
δ

UvU
′
v + δG′ΩG

Uv = δ(I − δG′)−1U ′c

ω = (I − δG′)−1(1− δ
δ

µvUv + δ(1− γ)G′ΩH(η′0 +H ′Uv))

µv =
δ

1− δ
(µc +

1− γ
2
|λ(δ)|2)

The first term in (VII.3) represents the log SDF when EIS = 1. The second term arises when

EIS 6= 1. With the assumption of EIS = 1, we only need to estimate the first term for the

long-run consumption risk measure. We conduct the analysis for the general case where

EIS 6= 1 by identifying wt+1 in the following way.

For the state vector xt+1, we choose F2,t+1, F6,t+1, F8,t+1 and their one month lags, factors

from 160 macro and financial variables, given the ability of this set of variables to predict

future consumption. Let εc,t+1 and εx,t+1 = [εF2,t+1, εF6,t+1, εF8,t+1, εF2,t, εF6,t, εF8,t]
′ denote

error terms from (VII.1) and (VII.2), which are to be estimated byOLS equation by equation.

They can be expressed byεc,t+1

εx,t+1

 =

η0
H

wt+1 ⇐⇒ εt+1 = Mwt+1

Expanding matrices yields
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⇐⇒



εc,t+1

εF2,t+1

εF6,t+1

εF8,t+1

εF2,t

εF6,t

εF8,t


=



η0,c η0,F2 η0,F6 η0,F8 η0,F2,−1 η0,F6,−1 η0,F8,−1

H2,c H2,2 H2,6 H2,8 H2,2,−1 H2,6,−1 H2,8,−1

H6,c H6,2 H6,6 H6,8 H6,2,−1 H6,6,−1 H6,8,−1

H8,c H8,2 H8,6 H8,8 H8,2,−1 H8,6,−1 H8,8,−1

H2,−1,c H2,−1,2 H2,−1,6 H2,−1,8 H2,−1,2,−1 H2,−1,6,−1 H2,−1,8,−1

H6,−1,c H6,−1,2 H6,−1,6 H6,−1,8 H6,−1,2,−1 H6,−1,6,−1 H6,−1,8,−1

H8,−1,c H8,−1,2 H8,−1,6 H8,−1,8 H8,−1,2,−1 H8,−1,6,−1 H8,−1,8,−1





wc,t+1

wF2,t+1

wF6,t+1

wF8,t+1

wF2,t

wF6,t

wF8,t


Given V ar(wt+1) = I and V ar(εt+1) = MM ′, there are 28 equations and 49 unknowns.

Therefore, we impose the following shock structure to identify ω.

⇐⇒



εc,t+1

εF2,t+1

εF6,t+1

εF8,t+1

εF2,t

εF6,t

εF8,t


=



η0,c η0,F2 η0,F6 η0,F8 η0,F2,−1 η0,F6,−1 η0,F8,−1

H2,c H2,2 H2,6 H2,8 H2,2,−1 H2,6,−1 H2,8,−1

H6,c H6,2 H6,6 H6,8 0 0 0

H8,c H8,2 H8,6 H8,8 0 0 0

0 0 0 0 H2,−1,2,−1 0 0

0 0 0 0 H6,−1,2,−1 H6,−1,6,−1 0

0 0 0 0 H8,−1,2,−1 H8,−1,6,−1 H8,−1,8,−1





wc,t+1

wF2,t+1

wF6,t+1

wF8,t+1

wF2,t

wF6,t

wF8,t


We do not impose a lower triangular matrix as usual in the structural VAR in order to

plausibly assume that shocks at time t + 1 do not have an impact on error terms at time t.

By imposing the above structure, first η0 and H are estimated from V ar(εt+1) = MM ′ and

then, wt+1 are estimated from wt+1 = M−1εt+1. Finally, other parameters and matrices in

the second term in (VII.3) are computed.

Table IA5 reports variables and descriptions of 160 pre-selected macro and financial

variables as well as the variance decomposition ofF2,t, F6,t, F8,twith respect to 160 variables.

Table IA19 reports R2 and AIC from regressions of consumption growth on state variables

to show how F2,t, F6,t, F8,t and their one month lags are selected for xt. Table 6 reports the

VAR estimation results and predictive regressions of credit spread sorted decile portfolios

on state variables. Table IA6 reports the descriptive statistics of the long-run risk measure

based on the VAR estimation.
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Furthermore, we expand the VAR estimates to allow for volatility shocks that enter the

SDF. Specifically, we include realized variance of monthly industrial production growth as

an additional state variable in the VAR in (VII.2), while other state variables are kept un-

changed. We then follow Bansal et al. (2014) and add additional shock to the SDF in (VII.3)

to create an augmented SDF,

sBKSYt+1 = st+1 +
1

2
χ(1− γ)2i′vQεt+1, (VII.4)

where st+1 is the original SDF in (VII.3), χ is the ratio of variance of long-run consumption

growth to variance of current consumption growth, iv is an indicator vector that selects the

entry for realized variance, and Q ≡ δG(I − δG)−1.

The SDF in (VII.4) explicitly accounts for volatility news that is an additional shock to

investors’ marginal utility. However, we still restrict its loading as a function of the risk-

aversion coefficient, γ, and thus the degrees of freedom in the model remain unchanged.

Using the version of the model with EIS=1, we repeat the GMM estimates as we do for

Table 7 and report the results in Table IA20.

In Table IA20, the estimated risk-aversion coefficient γ is 20.62, which is fairly close

to the main VAR results in Table 7 (18.9). The cross-sectional R-squared is 0.85, which is

also similar to Table 7. Therefore, our VAR results are robust to explicitly accounting for

volatility shocks.
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Table IA1. GMM Cross-Sectional Regression Using 2020 Samples

This table reports GMM cross-sectional regression results using available most recent samples in 2020 with
different long-run horizons S: Ê[ri,t+1 − rf,t] +

σ2(ri,t+1)
2 − σ2(rf,t)

2 = ζ + (γ − 1) ˆcov(
∑S−1
s=0 δ

s(ct+1+s −
ct+s), ri,t+1−rf,t)+ei where ri,t+1 is the log return of an asset i, rf,t is the log rate of 30-day T-bill, δ = 0.951/4

for CEX and δ = 0.951/12 for NIPA, ct is the log consumption. The long-run consumption risk factor is mea-
sured by the discounted cumulative consumption growth over multiple horizons

∑S−1
s=0 δ

s(ct+1+s − ct+s).
Panel A reports the results using the consumption growth of wealthy households defined as the top 30% of
asset holders from CEX data. Panel B reports the results using the consumption growth of aggregate house-
holds from NIPA. The quantity of risk is jointly estimated with parameters ζ and γ using GMM. Test assets
are 40 portfolios including 10 credit spread-sorted portfolios, 5 downside risk-sorted portfolios, 5 maturity-
sorted portfolios, 5 credit rating-sorted portfolios, 5 intermediary factor (He, Kelly, and Manela, 2017) beta-
sorted portfolios, 5 idiosyncratic volatility-sorted portfolios, and 5 long-term reversal portfolios. Reported
are the intercepts ζ and implied risk aversion coefficients γ with 95% confidence intervals for parameters,
based on bootstrapping with 5,000 replications in square brackets. The cross-sectional R̄2 is defined as
1 − varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test asset and R̂ei is the predicted average excess return
of portfolio i. 95% confidence intervals for R̄2 are reported in square brackets. The pricing error is measured
by RMSE

RMSR where RMSE =
√

1
N

∑N
i=1(E(Rei )− R̂ei)2 and RMSR =

√
1
N

∑N
i=1E(Rei )

2. Time period spans
fromMarch 1984 to February 2020 for CEX and from February 1973 to October 2020 for NIPA. Unconditional
pricing errors ζ are multiplied by 100 for ease of exposition.

S (quarters) 1 2 4 8 12 16 20 24

Panel A: NIPA (aggregate consumption)
ζ (%) 0.74 0.57 0.59 0.23 0.19 0.42 0.38 0.68

[0.39 1.02] [0.17 1.01] [0.16 1.14] [-0.2 0.97] [-0.13 0.98] [-0.08 1.27] [-0.05 1.04] [0.22 1.27]
γ 52.48 59.31 61.31 47.48 52.24 51.83 48.60 50.60

[0 306.69] [0.01 168.9] [0.01 96.45] [0.03 66.32] [0.05 69.57] [0.06 84.81] [0.07 78.55] [0.09 78.79]
R̄2 0.41 0.48 0.47 0.68 0.65 0.17 0.66 0.17

[0.23 0.74] [0.17 0.71] [0 0.76] [0.16 0.8] [0.08 0.84] [0 0.79] [0.04 0.82] [0 0.76]
RMSE
RMSR 0.24 0.22 0.23 0.19 0.19 0.30 0.18 0.29

Number of assets 40 40 40 40 40 40 40 40
Number of asset-month 21,760 21,680 21,440 20,960 20,480 20,000 19,520 19,040

Panel B: CEX (consumption of wealthy households)
ζ (%) 0.72 0.46 0.84 0.99 0.95 0.48 0.72 0.74

[0.5 1.3] [0.13 1.19] [0.42 1.22] [0.64 1.38] [0.52 1.74] [0.13 0.94] [0.41 0.95] [0.24 1.11]
γ 22.66 23.29 17.17 21.74 16.96 19.89 15.45 23.56

[-1.19 40.48] [1.25 34.73] [-4.83 32.01] [-20.04 43.61] [-20.79 37.89] [4.43 29.73] [7.32 26.41] [5.9 45.25]
R̄2 0.32 0.71 0.21 0.29 0.13 0.71 0.81 0.61

[0 0.65] [0 0.93] [0 0.74] [0 0.67] [0 0.54] [0.05 0.89] [0.25 0.9] [0.08 0.79]
RMSE
RMSR 0.22 0.15 0.25 0.24 0.26 0.14 0.12 0.17

Number of assets 40 40 40 40 40 40 40 40
Number of asset-month 17,020 16,900 16,660 16,180 15,700 15,220 14,740 14,260
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Table IA2. Risk Aversion Estimates From Prior Studies

This table reports risk aversion estimates from prior studies estimating risk aversion coefficients from the consumption-based asset pricing models.
Numbers in bold denote estimates of risk aversion prior studies base on to claim support of the model. Square brackets denote boundaries of risk
aversion for conditional risk-aversion specifications.

Study Risk aversion Specification Asset Class Consumption

Attanasio (1991) 168, 201, 259, 286 Unconditional Equity NIPA aggregate
Ferson and Harvey (1993) 42, 49, 80, 99, 169, 184 Unconditional Equity NIPA aggregate
Aït-Sahalia, Parker, and Yogo (2004) 7, 12, ..., 20, 50 Unconditional Equity Luxury goods
Aït-Sahalia, Parker, and Yogo (2004) 50, 173 Unconditional Equity NIPA aggregate
Duffee (2005) -237, -181, -168, -31 Unconditional Equity NIPA aggregate
Duffee (2005) [-88, -4] Conditional Equity NIPA aggregate
Parker and Julliard (2005) 9 (R2 = 0.04), 12 (R2 = 0.07), 25, 39 Unconditional Equity NIPA aggregate
Bansal, Kiku, and Yaron (2007)* 15, 16 Unconditional Equity NIPA aggregate
Malloy, Moskowitz, and Vissing-Jørgensen (2009)* 13 (R2 = 0.01), 18 (R2 = 0.05), ..., 541, 1,037 Unconditional Equity NIPA aggregate
Malloy, Moskowitz, and Vissing-Jørgensen (2009)* -390, -346, . . . , 14, 17, 19, 137 Unconditional Equity CEX stockholders
Nagel and Singleton (2011) [-3000, -2000] Conditional Equity NIPA aggregate
Nagel and Singleton (2011) 365 Unconditional Equity NIPA aggregate
Savov (2011) 15, 17, 22, 26 Unconditional Equity Municipal solid waste (garbage)
Roussanov (2014) [-250, 600] Conditional Equity NIPA aggregate
Bednarek and Patel (2015)* 30, 31, 43, 48 Unconditional Equity NIPA aggregate
Calvet and Czellar (2015)* 27 Unconditional Equity NIPA aggregate
Kim and Lee (2016)* 80, 92 Unconditional Equity NIPA aggregate
Abhyank, Klinkowska, and Lee (2017)* 64, 103, 123 Unconditional Equity NIPA aggregate
Kroencke (2017) 19, 23 Unconditional Equity Unfiltered NIPA aggregate
Malloy, Moskowitz, and Vissing-Jørgensen (2009)* 13 Unconditional Government bonds CEX stockholders
Malloy, Moskowitz, and Vissing-Jørgensen (2009)* 81 Unconditional Government bonds CEX aggregate
Abhyank, Klinkowska, and Lee (2017)* 51, 52 Unconditional Government bonds NIPA aggregate
Note: * denotes a paper that tests the long-run risk model of Bansal and Yaron (2004).
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Table IA3. Volatility and Sensitivity of Consumption Growth with Different Levels of
Cutoff

This table reports volatility of S-quarter growth rate of CEX wealthy households’ consumption with different
levels of a wealth cutoff in Panel A and time-series regressions of those consumption measures on aggregate
bond returns over different long-run horizons S in Panel B,

S−1∑
s=0

δs(ct+1+s − ct+s) = b0 + b1rt+1 + ut,t+1+S ,

where δ = 0.951/4. The values in parentheses are standard errors with the Newey-West S × 3 -1 month lags.

S = 1 2 4 8 12 16 20 24

Panel A: Volatility of consumption growth
CEX wealthy top 10 0.144 0.152 0.160 0.176 0.170 0.187 0.196 0.202
CEX wealthy top 30 0.083 0.088 0.086 0.089 0.089 0.088 0.088 0.084
CEX wealthy top 50 0.061 0.063 0.064 0.063 0.064 0.064 0.062 0.061
CEX wealthy top 70 0.051 0.054 0.056 0.052 0.055 0.054 0.053 0.053

Panel B: Sensitivity to corporate bond returns
CEX wealthy top 10 0.089 0.405 0.505 -0.078 0.32 0.496 0.518 0.415
(s.e.) (0.228) (0.211) (0.224) (0.222) (0.223) (0.392) (0.262) (0.292)
R2 3.2×10−4 0.006 0.008 1.7×10−4 0.003 0.006 0.006 0.004

CEX wealthy top 30 0.260 0.370 0.253 0.098 0.145 0.450 0.383 0.258
(s.e.) (0.13) (0.126) (0.173) (0.108) (0.132) (0.129) (0.114) (0.116)
R2 0.008 0.015 0.007 0.001 0.002 0.023 0.016 0.008

CEX wealthy top 50 0.200 0.249 0.230 0.084 0.078 0.250 0.134 0.248
(s.e.) (0.09) (0.089) (0.103) (0.091) (0.102) (0.096) (0.119) (0.093)
R2 0.009 0.013 0.011 0.002 0.001 0.013 0.004 0.015

CEX wealthy top 70 0.218 0.19 0.235 0.048 0.142 0.171 0.157 0.246
(s.e.) (0.088) (0.088) (0.100) (0.074) (0.098) (0.078) (0.088) (0.073)
R2 0.016 0.011 0.016 0.001 0.006 0.009 0.008 0.020
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Table IA4. GMM Cross-Sectional Regression with Different Levels of Cutoff

This table reports GMM cross-sectional regression results over different long-run horizons S with different
levels of a wealth cutoff: Ê[ri,t+1−rf,t]+ σ̂2(ri,t+1)

2 − σ̂2(rf,t)
2 = ζ+(γ−1) ˆcov(

∑S−1
s=0 δ

s(ct+1+s−ct+s), ri,t+1−
rf,t) + ei where ri,t+1 is the quarterly log return of an asset i, rf,t is the quarterly log rate of 30-day T-bill
in Panels A, B, D and E while it is the log return on matching Treasury bonds in Panel C, δ = 0.951/4, ct is
the log consumption. The long-run consumption risk factor is measured by the discounted cumulative con-
sumption growth over multiple horizons

∑S−1
s=0 δ

s(ct+1+s − ct+s). The quantity of risk is jointly estimated
with parameters ζ, η, and γ using GMM. Test assets are 40 portfolios including 10 credit spread-sorted
portfolios, 5 downside risk-sorted portfolios, 5 maturity-sorted portfolios, 5 credit rating-sorted portfolios,
5 intermediary factor (He, Kelly, and Manela, 2017) beta-sorted portfolios, 5 idiosyncratic volatility-sorted
portfolios, and 5 long-term reversal portfolios. Reported are the intercepts ζ, η and implied risk-aversion
coefficients γ. The cross-sectional R̄2 is defined as 1− varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test asset
and R̂ei is the predicted average excess return of portfolio i. 95% confidence intervals for R̄2 are reported
in square brackets. The pricing error is measured by RMSE

RMSR where RMSE =
√

1
N

∑N
i=1(E(Rei )− R̂ei)2 and

RMSR =
√

1
N

∑N
i=1E(Rei )

2. Time period spans from March 1984 to December 2019 for CEX and from
February 1973 to December 2019 for NIPA. Unconditional pricing errors ζ and η are multiplied by 100 for
ease of exposition.

S = 1 2 4 8 12 16 20 24

CEX wealthy top 10 γ 12.08 18.24 13.86 6.82 12.70 6.54 9.43 10.92
R̄2 0.14 0.72 0.82 0.16 0.27 0.04 0.41 0.27

CEX wealthy top 30 γ 23.49 23.54 17.05 21.96 16.81 16.07 15.44 23.48
R̄2 0.33 0.72 0.21 0.29 0.13 0.69 0.80 0.62

CEX wealthy top 50 γ 25.11 34.34 30.44 10.83 36.32 25.42 32.75 28.88
R̄2 0.21 0.56 0.32 0.02 0.61 0.57 0.79 0.86

CEX wealthy top 70 γ 29.57 37.86 36.23 14.64 42.36 37.77 40.06 39.24
R̄2 0.35 0.85 0.61 0.02 0.77 0.60 0.90 0.78
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Table IA5. State Variables and Variance Decomposition

Table IA5 presents variable names followed by a description. The variance decomposition is defined as
βz

cov(x,z)
var(x) in percentage terms where βz is a OLS coefficient for a variable z from a multiple regression of

x on 160 variables where x = F2,t, F6,t, and F8,t and z is one of 160 variables. The column tcode denotes
the following data transformation for a series z before estimating factors: (1) no transformation; (2) ∆zt;
(3) ∆2zt; (4) log(zt); (5) ∆log(zt); (6) ∆2log(zt); (7) ∆(zt/zt−1− 1). In Group 9, ‘JLN2015’ denotes Jurado,
Ludvigson, and Ng (2015), and ‘BBD2016’ denotes Baker, Bloom, and Davis (2016).

Variables Description Variance Decomposition (%) tcode

F2,t F6,t F8,t

Group 1: Output and Income

1 RPI Real Personal Income 0.110 0.095 0.302 5
2 W875RX1 Real personal income ex transfer receipts 0.055 0.057 0.319 5
3 INDPRO IP Index 0.013 2.107 -0.054 5
4 IPFPNSS IP: Final Products and Nonindustrial Supplies 0.024 2.899 0.086 5
5 IPFINAL IP: Final Products (Market Group) 0.035 3.298 0.092 5
6 IPCONGD IP: Consumer Goods 0.011 2.987 0.225 5
7 IPDCONGD IP: Durable Consumer Goods -0.004 2.831 0.098 5
8 IPNCONGD IP: Nondurable Consumer Goods 0.030 1.002 1.191 5
9 IPBUSEQ IP: Business Equipment 0.030 1.659 -0.034 5
10 IPMAT IP: Materials 0.003 0.960 -0.151 5
11 IPDMAT IP: Durable Materials 0.001 1.398 0.072 5
12 IPNMAT IP: Nondurable Materials 0.005 0.255 0.128 5
13 IPMANSICS IP: Manufacturing (SIC) 0.006 2.373 -0.005 5
14 IPB51222S IP: Residential Utilities 0.023 -0.008 1.060 5
15 IPFUELS IP: Fuels 0.013 0.132 -0.013 5
16 CUMFNS Capacity Utilization: Manufacturing 0.002 2.356 -0.100 2

Group 2: Labor Market

17 HWI Help-Wanted Index for United States 0.165 0.007 -0.047 2
18 HWIURATIO Ratio of Help Wanted/No. Unemployed 0.196 0.007 -0.080 2
19 CLF16OV Civilian Labor Force 0.062 0.040 -0.187 5
20 CE16OV Civilian Employment 0.035 -0.022 -0.004 5
21 UNRATE Civilian Unemployment Rate 0.003 0.038 -0.256 2
22 UEMPMEAN Average Duration of Unemployment (Weeks) -0.002 0.222 0.035 2
23 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks -0.008 0.074 0.066 5
24 UEMP5TO14 Civilians Unemployed for 5-14 Weeks 0.079 0.023 -0.006 5
25 UEMP15OV Civilians Unemployed - 15 Weeks & Over 0.005 0.020 -0.138 5
26 UEMP15T26 Civilians Unemployed for 15-26 Weeks 0.001 0.110 -0.003 5
27 UEMP27OV Civilians Unemployed for 27 Weeks and Over 0.005 0.240 -0.108 5
28 CLAIMSx Initial Claims 0.067 0.139 -0.102 5
29 PAYEMS All Employees: Total nonfarm -0.004 -0.207 1.092 5
30 USGOOD All Employees: Goods-Producing Industries 0.001 -0.205 0.124 5
31 CES1021000001 All Employees: Mining and Logging: Mining 0.051 0.010 -0.011 5
32 USCONS All Employees: Construction 0.003 -0.142 -0.077 5
33 MANEMP All Employees: Manufacturing 0.003 -0.099 0.687 5
34 DMANEMP All Employees: Durable goods 0.010 -0.036 0.248 5
35 NDMANEMP All Employees: Nondurable goods -0.008 -0.113 3.316 5
36 SRVPRD All Employees: Service-Providing Industries -0.007 -0.113 2.305 5
37 USTPU All Employees: Trade, Transportation & Utilities -0.008 -0.066 1.589 5
38 USWTRADE All Employees: Wholesale Trade -0.010 0.141 0.773 5
39 USTRADE All Employees: Retail Trade -0.001 -0.043 1.641 5
40 USFIRE All Employees: Financial Activities -0.014 -0.037 0.769 5
41 USGOVT All Employees: Government 0.036 -0.006 1.000 5
42 CES0600000007 Avg Weekly Hours : Goods-Producing 0.002 0.496 -2.243 1
43 AWOTMAN Avg Weekly Overtime Hours : Manufacturing 0.000 0.193 -0.125 2
44 AWHMAN Avg Weekly Hours : Manufacturing 0.001 0.535 -2.445 1
45 CES0600000008 Avg Hourly Earnings : Goods-Producing -0.012 0.103 0.351 6
46 CES2000000008 Avg Hourly Earnings : Construction -0.002 0.078 0.007 6
47 CES3000000008 Avg Hourly Earnings : Manufacturing -0.007 0.211 0.428 6
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Table IA5 – continued from previous page

Variables Description Variance Decomposition (%) tcode

F2,t F6,t F8,t

Group 3: Consumption and Orders

48 HOUST Housing Starts: Total New Privately Owned 0.088 -0.029 4.013 4
49 HOUSTNE Housing Starts, Northeast 0.073 -0.092 -2.602 4
50 HOUSTMW Housing Starts, Midwest 0.037 0.002 -0.472 4
51 HOUSTS Housing Starts, South 0.086 -0.056 8.203 4
52 HOUSTW Housing Starts, West 0.061 0.034 5.170 4
53 PERMIT New Private Housing Permits (SAAR) 0.065 0.063 8.062 4
54 PERMITNE New Private Housing Permits, Northeast (SAAR) 0.068 -0.031 -1.870 4
55 PERMITMW New Private Housing Permits, Midwest (SAAR) 0.032 0.055 1.511 4
56 PERMITS New Private Housing Permits, South (SAAR) 0.040 0.043 11.610 4
57 PERMITW New Private Housing Permits, West (SAAR) 0.054 0.063 6.352 4

Group 4: Orders and Inventories

58 DPCERA3M086SBEA Real personal consumption expenditures 0.115 0.026 0.157 5
59 CMRMTSPLx Real Manu. and Trade Industries Sales 0.096 0.643 0.061 5
60 RETAILx Retail and Food Services Sales 0.089 0.169 0.082 5
61 ACOGNO New Orders for Consumer Goods -0.030 -0.062 2.080 5
62 AMDMNOx New Orders for Durable Goods -0.004 1.182 0.241 5
63 ANDENOx New Orders for Nondefense Capital Goods 0.019 0.819 0.084 5
64 AMDMUOx Unfilled Orders for Durable Goods 0.072 -0.001 0.130 5
65 BUSINVx Total Business Inventories 0.108 0.017 0.068 5
66 ISRATIOx Total Business: Inventories to Sales Ratio 0.142 1.062 0.229 2
67 UMCSENTx Consumer Sentiment Index 0.330 1.493 4.243 2

Group 5: Money and Credit

68 M1SL M1 Money Stock -0.006 0.271 0.015 6
69 M2SL M2 Money Stock 0.003 1.192 -0.034 6
70 M2REAL Real M2 Money Stock -0.038 0.293 -0.167 5
71 BOGMBASE Monetary Base; Total 0.000 0.021 0.127 6
72 TOTRESNS Total Reserves of Depository Institutions 0.013 0.049 0.351 6
73 NONBORRES Reserves Of Depository Institutions 0.010 0.171 0.248 7
74 BUSLOANS Commercial and Industrial Loans 0.022 -0.013 0.094 6
75 REALLN Real Estate Loans at All Commercial Banks -0.017 -0.020 0.000 6
76 NONREVSL Total Nonrevolving Credit 0.003 -0.016 0.026 6
77 CONSPI Nonrevolving consumer credit to Personal Income 0.007 0.340 0.114 2
78 MZMSL MZM Money Stock 0.007 1.502 -0.066 6
79 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 0.050 0.014 0.119 6
80 DTCTHFNM Total Consumer Loans and Leases Outstanding 0.034 0.004 0.046 6
81 INVEST Securities in Bank Credit at All Commercial Banks -0.003 0.094 0.007 6

Group 6: Prices

82 WPSFD49207 PPI by Commodity: 0.008 0.185 0.233 6
Final Demand: Finished Goods

83 WPSFD49502 PPI by Commodity: 0.012 0.195 0.245 6
Final Demand: Personal Consumption Goods

84 WPSID61 PPI by Commodity: 0.023 0.329 -0.017 6
Intermediate Demand, Processed Goods

85 WPSID62 PPI by Commodity: 0.010 0.443 -0.038 6
Intermediate Demand, Unprocessed Goods

86 OILPRICEx Crude Oil, spliced WTI and Cushing 0.021 0.001 0.049 6
87 PPICMM PPI: Metals and metal products 0.064 0.077 0.083 6
88 CPIAUCSL CPI : All Items -0.007 0.339 0.111 6
89 CPIAPPSL CPI : Apparel 0.006 0.003 0.001 6
90 CPITRNSL CPI : Transportation 0.059 0.353 0.196 6
91 CPIMEDSL CPI : Medical Care 0.000 -0.025 0.011 6
92 CUSR0000SAC CPI : Commodities 0.011 0.421 0.249 6
93 CUSR0000SAD CPI : Durables 0.016 -0.007 0.011 6
94 CUSR0000SAS CPI : Services 0.015 0.001 0.084 6
95 CPIULFSL CPI : All Items Less Food 0.029 0.308 0.062 6
96 CUSR0000SA0L2 CPI : All items less shelter -0.002 0.415 0.109 6
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Table IA5 – continued from previous page

Variables Description Variance Decomposition (%) tcode

F2,t F6,t F8,t

97 CUSR0000SA0L5 CPI : All items less medical care 0.003 0.385 0.091 6
98 PCEPI Personal Cons. Expend.: Chain Index 0.008 0.260 0.125 6
99 DDURRG3M086SBEA Personal Cons. Exp: Durable goods -0.002 0.009 -0.010 6
100 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods 0.009 0.444 0.243 6
101 DSERRG3M086SBEA Personal Cons. Exp: Services 0.002 0.000 -0.001 6

Group 7: Interest rate and Exchange Rates

102 FEDFUNDS Effective Federal Funds Rate 0.110 0.778 -0.113 2
103 CP3Mx 3-Month AA Financial Commercial Paper Rate 0.202 1.460 -0.146 2
104 TB3MS 3-Month Treasury Bill 0.073 2.529 -0.202 2
105 TB6MS 6-Month Treasury Bill 0.133 2.844 -0.216 2
106 GS1 1-Year Treasury Rate 0.115 3.301 -0.232 2
107 GS5 5-Year Treasury Rate -0.018 5.466 -0.130 2
108 GS10 10-Year Treasury Rate -0.055 5.148 0.002 2
109 AAA Moody’s Seasoned Aaa Corporate Bond Yield 0.235 3.526 0.064 2
110 BAA Moody’s Seasoned Baa Corporate Bond Yield 0.559 3.263 0.038 2
111 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS -0.010 0.583 0.774 1
112 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 0.031 0.507 0.267 1
113 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 0.004 0.646 0.382 1
114 T1YFFM 1-Year Treasury C Minus FEDFUNDS -0.015 0.755 0.359 1
115 T5YFFM 5-Year Treasury C Minus FEDFUNDS 0.071 0.135 0.076 1
116 T10YFFM 10-Year Treasury C Minus FEDFUNDS 0.133 0.046 -0.338 1
117 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 0.114 -0.010 -0.964 1
118 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 0.110 0.018 -0.898 1
119 TWEXAFEGSMTHx Trade Weighted U.S. Dollar Index: Major Currencies 0.315 1.771 8.964 5
120 EXSZUSx Switzerland / U.S. Foreign Exchange Rate 0.054 2.467 2.770 5
121 EXJPUSx Japan / U.S. Foreign Exchange Rate 0.013 2.247 2.117 5
122 EXUSUKx U.S. / U.K. Foreign Exchange Rate 0.092 0.621 2.653 5
123 EXCAUSx Canada / U.S. Foreign Exchange Rate 0.846 0.035 2.019 5
124 RREL Relative T-bill rate 0.028 1.023 -0.047 1

Group 8: Stock Market

125 S&P 500 S&P’s Common Stock Price Index: Composite 4.368 0.379 0.037 5
126 S&P: indust S&P’s Common Stock Price Index: Industrials 4.144 0.422 0.018 5
127 S&P div yield S&P’s Composite Common Stock: Dividend Yield 2.360 -0.024 0.017 2
128 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio 3.117 0.058 0.021 5
129 VXOCLSx CBOE S&P 100 Volatility Index: VXO 0.659 2.463 3.685 1
130 DE Dividend payout ratio 0.072 0.163 0.212 1
131 SVAR Stock variance 0.911 1.992 4.443 1
132 NoDur Consumer Nondurables 3.884 0.152 0.054 1
133 Durbl Consumer Durables 5.175 0.494 0.068 1
134 Manuf Manufacturing 5.682 0.493 0.386 1
135 Enrgy Oil, Gas, and Coal Extraction and Products 3.076 0.129 0.477 1
136 HiTec Business Equipment 5.064 0.843 0.123 1
137 Telcm Telephone and Television Transmission 4.504 0.102 0.040 1
138 Shops Wholesale, Retail, and Some Services 4.630 0.380 0.020 1
139 Hlth Healthcare, Medical Equipment, and Drugs 3.069 0.370 0.124 1
140 Utils Utilities 2.129 -0.051 0.026 1
141 Other Other 5.647 0.477 0.093 1
142 SMALLLoBM Small and Value 5.134 0.754 0.035 1
143 ME1BM2 Small and Neutral 5.612 0.527 0.041 1
144 SMALLHiBM Small and Growth 5.396 0.458 0.010 1
145 BIGLoBM Big and Value 5.753 0.594 0.203 1
146 ME2BM2 Big and Neutral 6.208 0.309 0.216 1
147 BIGHiBM Big and Growth 5.690 0.475 0.098 1

Group 9: Economic uncertainty

148 JLN-fin-1 1-month Financial uncertainty by JLN 2015 0.413 1.805 1.422 1
149 JLN-fin-3 3-month Financial uncertainty by JLN 2015 0.396 1.869 1.523 1
150 JLN-fin-12 12-month Financial uncertainty by JLN2015 0.351 2.021 1.952 1
151 JLN-mac-1 1-month Macro uncertainty by JLN2015 0.107 0.417 0.546 1
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Table IA5 – continued from previous page

Variables Description Variance Decomposition (%) tcode

F2,t F6,t F8,t

152 JLN-mac-3 3-month Macro uncertainty by JLN2015 0.108 0.402 0.758 1
153 JLN-mac-12 12-month Macro uncertainty by JLN2015 0.091 0.292 1.290 1
154 JLN-real-1 1-month Real uncertainty by JLN2015 0.046 0.223 0.223 1
155 JLN-real-3 3-month Real uncertainty by JLN2015 0.051 0.214 -0.077 1
156 JLN-real-12 12-month Real uncertainty by JLN2015 0.063 0.108 -0.156 1
157 log-EPU Economic Policy Uncertainty by BBD2016 0.035 2.040 0.487 1

Group 10: Financial etc.

158 BM Book-to-market ratio -0.005 -0.081 1.774 1
159 NTIS Net equity expansion 0.021 0.093 0.903 1
160 Surplus3m 3-month surplus ratio by Duffee (2005) -0.004 0.039 -0.178 1
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Table IA6. Descriptive Statistics of the Long-Run Risk Measure Using VAR

This table reports the number of observations, mean, standard deviation, and percentiles of the demeaned
long-run consumption risk measure using the VAR and its component. The long-run risk is measured by
(Êt+1− Êt)

∑∞
s=0 β

s(ct+s+1− ct+s) = εSRt+1 + εLRt+1 where ct+1− ct = µc+Ucxt+ εSRt+1, xt+1 = Gxt+ εxt+1, and
εLRt+1 = δUc(I − δG)−1εxt+1, following Hansen et al. (2007) and Hansen, Heaton, and Li (2008). Time period
spans from March 1984 to December 2019.

Percentiles (%)
N Average

(%)
Std.
(%)

1st 5th 25th 50th 75th 95th 99th

(Êt+1 − Êt)
∑∞
s=0 β

s(ct+s+1 −
ct+s)

430 0.00 8.19 -21.82 -13.36 -5.15 0.21 5.58 13.38 19.44

εSRt+1 430 0.00 8.24 -17.93 -13.40 -5.59 -0.05 5.54 14.37 21.03
εLRt+1 430 0.00 3.09 -9.39 -4.78 -1.79 0.09 1.83 5.06 7.61
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Table IA7. Summary Statistics of Corporate Bond Database

This table reports the summary statistics of monthly bond returns in percentage form in our corporate bond database. The sample period is from
February 1973 to December 2019.

N Average Std. Percentiles

Data 1 5 10 25 50 75 90 95 99

All 2,297,675 0.85 7.39 -8.32 -3.50 -1.94 -0.29 0.70 1.80 3.45 5.16 11.12
Lehman Brothers 1,541,746 0.94 8.13 -7.76 -3.55 -2.01 -0.27 0.80 1.92 3.59 5.33 10.74
TRACE 589,814 0.61 4.55 -9.08 -3.21 -1.73 -0.32 0.42 1.45 3.02 4.54 11.27
NAIC 17,868 0.85 18.19 -20.55 -6.37 -3.29 -0.76 0.62 1.91 4.20 6.71 18.90
DataStream 148,247 0.76 6.14 -13.76 -3.77 -1.98 -0.23 0.67 1.73 3.57 5.66 14.33
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Table IA8. Descriptive Statistics

This table reports the number of asset-month observations, mean, standard deviation, and percentiles of
bond monthly returns. Assets are 10 credit spread-sorted portfolios, 5 downside risk-sorted portfolios, 5
maturity-sorted portfolios, 5 credit rating-sorted portfolios, 5 intermediary factor (He, Kelly, and Manela,
2017) beta-sorted portfolios, 5 idiosyncratic volatility-sorted portfolios, and 5 long-term reversal portfolios.
Asset data span from February 1973 to December 2019.

Percentiles (%)

N Average Std 1st 5th 25th 50th 75th 95th 99th
(%) (%)

Test assets returns (1-month growth)
Credit spread 5,570 0.70 2.13 -5.02 -2.37 -0.25 0.70 1.65 3.67 6.95
Downside 2,675 0.70 2.18 -5.61 -2.53 -0.15 0.62 1.53 4.04 7.58
Maturity 2,795 0.67 2.02 -4.99 -2.47 -0.23 0.63 1.56 3.62 7.01
Rating 2,795 0.68 2.14 -4.99 -2.59 -0.35 0.69 1.70 3.76 7.02
Intermediary 2,615 0.64 2.09 -5.49 -2.57 -0.28 0.61 1.52 3.63 7.50
IdioVol 2,675 0.70 2.18 -5.30 -2.40 -0.15 0.62 1.56 3.91 7.79
Reversal 2,535 0.69 2.08 -5.17 -2.30 -0.23 0.65 1.53 3.71 7.30
All portfolios 21,660 0.68 2.12 -5.18 -2.46 -0.23 0.65 1.59 3.74 7.30
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Table IA9. Cyclicality of Consumption Growth

Default ∆ Macro Corp Bond Stock Recess Term D/P
Spread Uncertainty Returns Returns Dummy Spread Ratio

Panel A. Wealthy Households’ Consumption
CEX LR b1 -0.991 -0.169 0.251 0.035 -0.005 -0.127 0.060

t(b1) (-2.21) (-3.48) (3.53) (0.94) (-0.23) (-0.23) (0.12)
R2 0.01 0.01 0.02 0.00 0.00 0.00 0.00

Panel B. Bondholders’ Consumption
CEX LR b1 -2.489 -0.127 0.305 0.080 -0.033 -0.478 -1.140

t(b1) (-4.59) (-2.59) (2.61) (1.35) (-2.72) (-0.75) (-2.27)
R2 0.06 0.01 0.02 0.01 0.02 0.01 0.02

Panel C. NIPA Consumption
NIPA LR b1 -0.856 -0.119 0.125 0.064 -0.040 0.810 -0.473

t(b1) (-0.85) (-1.43) (1.12) (1.52) (-2.13) (1.36) (-0.64)
R2 0.01 0.01 0.01 0.01 0.07 0.05 0.01

NIPA 1Q b1 -0.319 -0.019 0.004 0.017 -0.010 -0.058 -0.097
t(b1) (-3.65) (-0.82) (0.16) (2.20) (-6.11) (-1.62) (-1.33)
R2 0.11 0.02 0.00 0.06 0.24 0.02 0.02

This table reports the estimates for the regression of consumption growth on macroeconomic factors

19∑
s=0

δs∆ct+s+1 = b0 + b1xt+1 + ut+s+1,

where xt+1 is the stock and corporate bondmarket excess returns, a dummy variable for NBER reces-
sions, changes in macroeconomic uncertainty of Jurado, Ludvigson, and Ng (2015), term spreads,
default spreads, the dividend-price ratio of the stock market, and stock market excess returns.
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Table IA10. Estimates for Consumption Predictive Regression

This table reports the estimates for the consumption forecasting regression:

cm+1 − cm−2 = µc + Ucxm−2 + εm+1,

where the left-hand-side variables are quarterly consumption growth (in percent) for wealthy households,
bondholders and aggregate households. Panel B shows the product of the slope coefficients and standard
deviation of the state variables. The values in parentheses are standard errors with the Newey-West 24-month
lags.

µc Uc

constant F2,m−2 F6,m−2 F8,m−2 F2,m−3 F6,m−3 F8,m−3 Adj.R2

Panel A. VAR Coefficient Estimates
Wealthy Households -0.89 -0.16 -5.07 -13.79 -2.98 -2.71 9.77 0.027

(0.32) (1.44) (2.09) (3.37) (1.43) (2.83) (3.77)
Bondholders -1.03 0.66 -5.92 -18.55 -3.08 -0.93 13.72 0.029

(0.39) (1.54) (3.01) (4.21) (2.10) (3.56) (4.21)
NIPA Aggregate 0.45 -0.13 -0.03 -0.50 -0.13 0.09 -0.15 0.027

(0.07) (0.10) (0.14) (0.23) (0.10) (0.15) (0.28)

Panel B. Coefficient × Standard Deviation of State Variables
Wealthy Households -0.05 -0.83 -1.53 -0.84 -0.44 1.08
Bondholders 0.19 -0.97 -2.06 -0.87 -0.15 1.52
NIPA Aggregate -0.04 -0.01 -0.05 -0.04 0.01 -0.02
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Table IA11. Regression of Expected Consumption Growth on Asset Returns and Busi-
ness Cycle Variables

Table reports the slope coefficient, the associated t-statistics, and R-squared of the univariate regression of
shocks to long-run consumption growth as well as expected consumption growth on state variables. The
values in parentheses are t-statistics with the Newey-West 24-month lags.

Corp Bond Stock Macro Recess Term Default D/P
Returns Returns Uncertainty Dummy Spread Spread Ratio

LHV Shocks to long-run Et[ct+1 − ct]
expected growth

Wealthy b 0.141 0.099 -0.107 -0.010 -0.153 -0.554 -0.363
Household t(b) (1.63) (3.91) (-1.48) (-3.99) (-1.92) (-4.43) (-3.19)

R2 0.01 0.02 0.01 0.06 0.03 0.09 0.07

Bondholders b 0.070 0.077 -0.056 -0.008 -0.154 -0.461 -0.371
t(b) (0.63) (1.72) (-0.71) (-3.12) (-1.92) (-3.91) (-3.66)
R2 0.00 0.01 0.00 0.04 0.03 0.07 0.08

NIPA b 0.006 0.017 -0.014 0.000 -0.003 -0.025 -0.031
Aggregate t(b) (0.40) (3.13) (-0.90) (-0.94) (-0.36) (-1.49) (-2.50)

R2 0.00 0.08 0.01 0.01 0.00 0.03 0.08
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Table IA12. Model Parameters

This table reports the annualized parameter values used for the calibration. We use the parameter values from
Bhamra, Kuehn, and Strebulaev (2010b) which are estimated using consumption and corporate earnings data
from 1947Q1 to 2005Q4. Different from Bhamra, Kuehn, and Strebulaev (2010b), we use time-invariant
consumption growth volatility and earnings growth volatility, and also the EIS equals 1, which is consistent
with our empirical setting.

Parameter Symbol State 1 State 2

Consumption growth rate g 0.0141 0.0420
Consumption growth volatility σC 0.0101 0.0101
Earnings growth rate θ -0.0401 0.0782
Earnings growth volatility σsX 0.1012 0.1012
Idiosyncratic earnings growth volatility σsX 0.2258 0.2258
Correlation ρXC 0.1998 0.1998
Actual long-run probabilities fi 0.3555 0.6445
Actual convergence rate to long run p 0.7646 0.7646
Annual discount rate β 0.01 0.01
Tax rate η 0.15 0.15
Bankruptcy costs 1− αi 0.30 0.10
Elasticity of intertemporal substitution ψ 1 1
Risk aversion γ 10 10
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Table IA13. Descriptive Statistics of SCF Asset Holders

This table presents the descriptive statistics of non-corporate bondholders (Panel A), corporate bondholders (Panel B), non-equityholders (Panel C),
equityholders that account for indirect holdings through retirement accounts (Panel D), and total respondents (Panel E) in the Survey of Consumer
Finances (SCF) are from 1992, 1995, 1998, 2001, 2004, 2007, 2010, 2013, 2016, and 2019 waves. Corporate bond holders are defined as respondents
who directly or indirectly hold corporate bonds through funds. Wealth is the value of checking, savings, mutual funds, stocks, and bonds. Income is
the total household 12-month income before taxes. Dividend income is the total family annual dividend income. All dollar values are in 2019 dollars.

Equity Corporate bonds Wealth Income Dividend Age High College Nonwhite # of kids Married Male

Panel A: Non-corporate bondholders
Mean 110,099.00 0.00 158,026.10 88,892.10 937.22 49.85 0.39 0.55 0.28 0.81 0.58 0.72
Median 10.00 0.00 8,477.37 53,895.91 0.00 48.00 0.00 1.00 0.00 0.00 1.00 1.00

Panel B: Corporate bondholders
Mean 1,186,158.00 187,377.00 2,094,333.00 309,973.50 14,008.09 59.48 0.15 0.85 0.07 0.53 0.70 0.81
Median 296,242.40 31,180.71 589,877.80 128,251.20 2,000.00 60.00 0.00 1.00 0.00 0.00 1.00 1.00

Panel C: Non-equityholders
Mean 0.00 156.39 8,070.34 44,982.79 50.72 50.03 0.50 0.40 0.37 0.79 0.47 0.64
Median 0.00 0.00 1,084.55 32,579.77 0.00 48.00 0.00 0.00 0.00 0.00 0.00 1.00

Panel D: Equityholders
Mean 258,596.20 7,226.72 378,813.50 139,923.10 2,306.39 50.05 0.28 0.71 0.18 0.82 0.69 0.80
Median 35,141.45 0.00 55,305.77 86,320.40 0.00 49.00 0.00 1.00 0.00 0.00 1.00 1.00

Panel E: Total respondents
Mean 131,671.20 3,756.44 196,844.20 93,324.23 1,199.26 50.04 0.39 0.56 0.27 0.81 0.58 0.72
Median 176.74 0.00 9,051.93 54,941.79 0.00 49.00 0.00 1.00 0.00 0.00 1.00 1.00
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Table IA14. Probit regression of Corporate bond ownership Using Survey of Consumer
Finances

This table reports the Probit regression of households’ corporate bond ownership on households characteristics
that are available in both Survey of Consumer Finances(SCF) and Consumption Expenditure (CEX). The
SCF data are from the 1992, 1995, 1998, 2001, 2004, 2007, 2010, 2013, 2016, and 2019 waves. The
dependent variable is a dummy variable that takes one if a household has a positive holding either in corporate
bonds (SCF variable code X7634) or funds/ETFs that invest in corporate bonds (SCF variable code X3827)
otherwise zero. The regressors are the age of household (age), age squared (age2), highschool indicator
for households whose highest education is high school (educ>=4 and educ=<8), an college indicator for
households whose education level is higher than high school (educ>=9), an indicator for race not being
white/Caucasian (race=1), the number of children (Kids), log of one plus the ratio of financial wealth to
labor income where financial wealth equals the value of checking, savings, mutual funds, stocks, and bonds
and labor income is total household 12-month income before taxes (Log(1+Wealth/Income)), and log of one
plus the ratio of dividend income (SCF variable code X5710) to labor income (Log(1+Div/Income)).The SCF
data are from the 1992, 1995, 1998, 2001, 2004, 2007, 2010, 2013, 2016, and 2019 waves. Standard errors
are clustered by the wave.

Coeff. Std. error

age 0.048*** 0.006
age2 -3.4×10−4*** 5.4×10−5

1i∈highschool 0.237** 0.114
1i∈college 0.781*** 0.122
1i∈nonwhite -0.272*** 0.040
Kids 0.019 0.012
1i∈married 0.254*** 0.031
1i∈male 0.050 0.050
1i∈1992 0.486*** 0.010
1i∈1995 0.287*** 0.007
1i∈1998 0.236*** 0.007
1i∈2001 0.150*** 0.005
1i∈2004 0.267*** 0.004
1i∈2007 0.057*** 0.002
1i∈2010 0.134*** 0.005
1i∈2013 0.112*** 0.004
1i∈2016 -0.024*** 0.001
Log(1+Wealth/Income) 0.600*** 0.019
Log(1+Div/Income) -0.848*** 0.084
Cons -4.678*** 0.311

Number of Obs. 50,410
Pseudo R2 0.2616
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Table IA15. GMM Cross-Sectional Regression Using the Reverse Regression

This table reports GMM cross-sectional regression results over different long-run horizons S using the reverse
regression: ˆcov(

∑S−1
s=0 δ

s(ct+1+s − ct+s), ri,t+1 − rf,t) = η + 1
(γ−1) (Ê[ri,t+1 − rf,t] +

σ̂2(ri,t+1)
2 − σ̂2(rf,t)

2 ) + ui

where ri,t+1 is the quarterly log return of an asset i, rf,t is the quarterly log rate of 30-day T-bill, δ = 0.951/4, ct
is the log consumption. The long-run consumption risk factor is measured by the discounted cumulative con-
sumption growth over multiple horizons

∑S−1
s=0 δ

s(ct+1+s−ct+s). The quantity of risk is jointly estimated with
parameters ζ, η, and γ using GMM. Test assets are 40 portfolios including 10 credit spread-sorted portfolios,
5 downside risk-sorted portfolios, 5 maturity-sorted portfolios, 5 credit rating-sorted portfolios, 5 interme-
diary factor (He, Kelly, and Manela, 2017) beta-sorted portfolios, 5 idiosyncratic volatility-sorted portfolios,
and 5 long-term reversal portfolios. Reported are the intercepts ζ, η and implied risk-aversion coefficients
γ with 95% confidence intervals for parameters, based on bootstrapping with 5,000 replications in square
brackets. The cross-sectional R̄2 is defined as 1− varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test asset and
R̂ei is the predicted average excess return of portfolio i. 95% confidence intervals for R̄2 are reported in
square brackets. The pricing error is measured by RMSE

RMSR where RMSE =
√

1
N

∑N
i=1(E(Rei )− R̂ei)2 and

RMSR =
√

1
N

∑N
i=1E(Rei )

2. Time period spans from March 1984 to December 2019. Unconditional pricing
errors ζ and η are multiplied by 100 for ease of exposition.

S (quarters) 1 2 4 8 12 16 20 24

η (%) 0.00 -0.01 0.01 -0.01 0.01 -0.01 -0.03 -0.01
[-0.02 0.02] [-0.03 0.02] [-0.02 0.02] [-0.02 0.01] [-0.01 0.03] [-0.03 0.02] [-0.05 0.01] [-0.03 0.02]

γ 70.6 32.2 78.8 73.5 127.6 22.8 19.0 37.6
[32.1 5×1014] [16.9 3 ×1010] [32.0 2 ×1015] [35.2 3×1015] [41.8 4×1015] [16.1 85.8] [14.0 54.5] [25.7 119.7]

R̄2 0.32 0.72 0.21 0.29 0.12 0.69 0.80 0.61
[0 0.66] [0 0.93] [0 0.75] [0 0.66] [0 0.54] [0.04 0.9] [0.26 0.9] [0.08 0.8]

RMSE
RMSR 0.30 0.19 0.38 0.57 0.41 0.21 0.23 0.30
Number of assets 40 40 40 40 40 40 40 40
Number of asset-month 16,940 16,820 16,580 16,100 15,620 15,140 14,660 14,180
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Table IA16. Two-Pass Regression

This table reports two-pass regression results. In the first-stage time-series regression, excess returns
ri,t+1 − rf,t are regressed on the long-run consumption risk factor

∑19
s=0 δ

s(ct+1+s − ct+s) where ri,t+1

is the quarterly log return of an asset i, rf,t is the quarterly log rate of 30-day T-bill, δ = 0.951/4, and
ct is the log consumption. The long-run consumption risk factor is measured by the discounted cumula-
tive 20-quarter consumption growth. Consumption of wealthy households defined as the top 30% of asset
holders from CEX data is used. In the second-stage cross-sectional regression, average one month ahead
excess returns Ê[ri,t+1 − rf,t] +

σ̂2(ri,t+1)
2 − σ̂2(rf,t)

2 are regressed on estimated betas β̂i cross-sectionally.
Test assets are 40 portfolios including 10 credit spread-sorted portfolios, 5 downside risk-sorted portfolios, 5
maturity-sorted portfolios, 5 credit rating-sorted portfolios, 5 intermediary factor (He, Kelly, and Manela,
2017) beta-sorted portfolios, 5 idiosyncratic volatility-sorted portfolios, and 5 long-term reversal portfo-
lios. Reported are the intercepts λ0 and the price of risk λ1 with 95% confidence intervals for parame-
ters, based on bootstrapping with 5,000 replications in square brackets. The cross-sectional R̄2 is defined
as 1− varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test asset and R̂ei is the predicted average excess return
of portfolio i. 95% confidence intervals for R̄2 are reported in square brackets. The pricing error is measured
by RMSE

RMSR where RMSE =
√

1
N

∑N
i=1(E(Rei )− R̂ei)2 and RMSR =

√
1
N

∑N
i=1E(Rei )

2. ‘R̄2 with same λ1’
and ‘RMSE

RMSR with same λ1’ report the pricing performance by imposing γ estimated using all portfolios. Time
period spans from March 1984 to December 2019. Unconditional pricing errors λ0 are multiplied by 100 for
ease of exposition.

Assets Credit Spread Downside Maturity Rating Intermediary IdioVol Reversal All
portfolios portfolios portfolios portfolios portfolios portfolios portfolios portfolios

λ0 (%) 0.75 0.64 0.20 0.82 0.66 0.72 0.81 0.74
[0.33 1] [-0.01 0.85] [-0.46 1.28] [0.14 1.17] [0.21 1.55] [0.1 0.94] [0.47 1.13] [0.42 0.96]

λ1 0.12 0.13 0.27 0.10 0.11 0.11 0.09 0.11
[0.06 0.23] [0.04 0.31] [-0.13 0.52] [-0.02 0.29] [-0.15 0.21] [0.03 0.29] [0.04 0.14] [0.05 0.19]

R̄2 0.94 0.96 0.56 0.96 0.25 0.87 0.69 0.80
[0.36 0.98] [0.68 1] [0.01 0.96] [0.06 0.99] [0 0.88] [0.45 0.99] [0.3 0.94] [0.26 0.9]

R̄2 with same λ1 0.93 0.95 0.37 0.96 0.25 0.87 0.66 0.80
RMSE
RMSR 0.08 0.06 0.12 0.03 0.15 0.10 0.16 0.12
RMSE
RMSR with same λ1 0.09 0.07 0.14 0.05 0.18 0.10 0.17 0.12

Number of assets 10 5 5 5 5 5 5 40
Number of asset-month 3,690 1,845 1,845 1,845 1,785 1,845 1,805 14,660
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Table IA17. Two-Pass Regression Based on VAR

This table presents the cross-sectional test results using the long-run risk measure based on VAR. In this ta-
ble, The long-run consumption risk factor is measured as (Êt+1 − Êt)

∑∞
s=0 δ

s(ct+1+s − ct+s). A two-pass
regression is run where average excess returns are regressed on estimated betas cross-sectionally. Consump-
tion of wealthy households defined as the top 30% of asset holders from CEX data is used. Test assets are 10
credit spread-sorted portfolios, 5 downside risk-sorted portfolios, 5 maturity-sorted portfolios, 5 credit rating-
sorted portfolios, 5 intermediary factor (He, Kelly, and Manela, 2017) beta-sorted portfolios, 5 idiosyncratic
volatility-sorted portfolios, and 5 long-term reversal portfolios. 95% confidence intervals for parameters,
based on bootstrapping with 5,000 replications, are reported in square brackets. The cross-sectional R̄2 is
defined as 1− varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test asset and R̂ei is the predicted average excess
return of portfolio i. 95% confidence intervals for R̄2 are reported in square brackets. The pricing error is
measured by RMSE

RMSR where RMSE =
√

1
N

∑N
i=1(E(Rei )− R̂ei)2 and RMSR =

√
1
N

∑N
i=1E(Rei )

2. ‘R̄2 with
same λ1’ and ‘RMSE

RMSR with same λ1’ report the pricing performance by imposing λ1 estimated using all portfo-
lios. Time period spans from March 1984 to December 2019. Unconditional pricing errors λ0 are multiplied
by 100 for ease of exposition.

Assets Credit Spread Downside Maturity Rating Intermediary IdioVol Reversal All
portfolios portfolios portfolios portfolios portfolios portfolios portfolios portfolios

λ0 (%) 0.76 0.53 0.68 0.90 0.58 0.71 0.64 0.74
[0.28 1.23] [-0.07 0.83] [0.17 1.34] [0.32 1.58] [0.38 1.19] [0.00 0.94] [0.29 1.04] [0.40 1.00]

λ1 0.12 0.16 0.16 0.09 0.19 0.11 0.16 0.12
[-0.02 0.31] [0.04 0.46] [-0.13 0.49] [-0.18 0.39] [-0.11 0.27] [0.03 0.47] [0.06 0.26] [0.04 0.27]

R̄2 0.96 0.99 0.26 0.88 0.89 0.91 0.66 0.84
[0.06 0.98] [0.25 1.00] [0.00 0.98] [0.03 0.97] [0.00 0.97] [0.31 1.00] [0.14 0.92] [0.15 0.89]

R̄2 with same λ1 0.96 0.94 0.25 0.72 0.78 0.90 0.62 0.84
RMSE
RMSR 0.06 0.04 0.16 0.05 0.06 0.09 0.15 0.11
RMSE
RMSR with same λ1 0.06 0.09 0.17 0.08 0.08 0.11 0.17 0.11

Number of assets 10 5 5 5 5 5 5 40
Number of asset-month 4,260 2,130 2,130 2,130 2,070 2,130 2,090 16,940
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Table IA18. Two-Pass Regression Using NIPA Aggregate Consumption

This table reports two-pass regression results using NIPA aggregate consumption. In the first-stage time-series
regression, excess returns ri,t+1−rf,t are regressed on the long-run consumption risk factor

∑19
s=0 δ

s(ct+1+s−
ct+s) where ri,t+1 is the monthly log return of an asset i, rf,t is the monthly log rate of 30-day T-bill,
δ = 0.951/12, and ct is the log consumption. The long-run consumption risk factor is measured by the dis-
counted cumulative 24-month consumption growth. In the second-stage cross-sectional regression, average
one month ahead excess returns Ê[ri,t+1 − rf,t] +

σ2(ri,t+1)
2 − σ2(rf,t)

2 are regressed on estimated betas β̂i
cross-sectionally. Test assets are 40 portfolios including 10 credit spread-sorted portfolios, 5 downside risk-
sorted portfolios, 5 maturity-sorted portfolios, 5 credit rating-sorted portfolios, 5 intermediary factor (He,
Kelly, and Manela, 2017) beta-sorted portfolios, 5 idiosyncratic volatility-sorted portfolios, and 5 long-term
reversal portfolios. Reported are the intercepts λ0 and the price of risk λ1 with 95% confidence intervals
for parameters, based on bootstrapping with 5,000 replications in square brackets. The cross-sectional R̄2

is defined as 1 − varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test asset and R̂ei is the predicted average
excess return of portfolio i. 95% confidence intervals for R̄2 are reported in square brackets. The pricing
error is measured by RMSE

RMSR where RMSE =
√

1
N

∑N
i=1(E(Rei )− R̂ei)2 and RMSR =

√
1
N

∑N
i=1E(Rei )

2.
‘R̄2 with same λ1’ and ‘RMSE

RMSR with same λ1’ report the pricing performance by imposing γ estimated using
all portfolios. Time period spans from February 1973 to December 2019. Unconditional pricing errors λ0 are
multiplied by 100 for ease of exposition.

Assets Credit Spread Downside Maturity Rating Intermediary IdioVol Reversal All
portfolios portfolios portfolios portfolios portfolios portfolios portfolios portfolios

λ0 (%) 0.17 0.02 0.52 0.23 0.17 0.16 0.09 0.26
[-1.22 0.99] [-0.71 0.99] [0.33 1.13] [-1.48 1.04] [-0.43 1.14] [-0.3 1.02] [-0.75 1.3] [-0.19 1.02]

λ1 0.02 0.03 0.01 0.02 0.02 0.03 0.04 0.02
[0.01 0.04] [0.01 0.05] [0 0.02] [0.01 0.03] [-0.01 0.04] [0.01 0.05] [-0.01 0.05] [0.01 0.03]

R̄2 0.86 0.97 0.44 0.96 0.98 0.98 0.45 0.64
[0.48 0.94] [0.4 1] [0 0.74] [0.74 0.98] [0.01 0.98] [0.36 0.99] [0 0.86] [0.08 0.79]

R̄2 with same λ1 0.84 0.88 -0.27 0.91 0.98 0.93 0.37 0.64
RMSE
RMSR 0.15 0.05 0.10 0.05 0.03 0.04 0.22 0.20
RMSE
RMSR with same λ1 0.17 0.13 0.23 0.21 0.16 0.11 0.33 0.20

Number of assets 10 5 5 5 5 5 5 40
Number of asset-month 5,300 2,540 2,660 2,660 2,480 2,540 2,380 20,560
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Table IA19. Selection of Factors and Lag for Consumption Predictability

Table IA19 shows the state vector which minimizes the AIC along with some of other candidate sets that we
search for. Reported are the sets of state vector used to predict future consumption growth ct+1− ct with R2,
adjusted-R2, and AIC. Factors are estimated by the Principal Component Analysis based on 160 macro and
financial variables. Fn,t is the n-th factor from the PCA based on 160 pre-selected variables.

xt The number of lags R2 Adj.R2 AIC

F1,t 0 0.0018 -0.0005 -4.9829
F1,t 1 0.0025 -0.0022 -4.9789
F1,t 2 0.0026 -0.0045 -4.9744
...
F1,t, F2,t, F3,t 0 0.0074 0.0004 -4.9792
F1,t, F2,t, F3,t 1 0.0183 0.0043 -4.9763
F1,t, F2,t, F3,t 2 0.0241 0.0032 -4.9682
...
F2,t, F6,t, F8,t 0 0.0186 0.0117 -4.9906
F2,t, F6,t, F8,t 1 0.0410 0.0275 -4.9998
F2,t, F6,t, F8,t 2 0.0420 0.0214 -4.9867
...
F1,t, F2,t, ... ,F8,t 0 0.0311 0.0127 -4.9802
F1,t, F2,t, ... ,F8,t 1 0.0699 0.0339 -4.9838
F1,t, F2,t, ... ,F8,t 2 0.0806 0.0261 -4.9581
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Table IA20. Tests Using the Long-Run Risk Measure Based on VAR, Accounting For Volatility Shock

This table presents GMM cross-sectional test results using the long-run risk measure based on VAR. The long-run consumption risk factor is measured as
(Êt+1− Êt)

∑∞
s=0 δ

s(ct+1+s− ct+s). The quantity of risk is jointly estimated with parameters ζ and γ using GMM. Consumption of wealthy households
defined as the top 30% of asset holders from CEX data is used. Test assets are 10 credit spread-sorted portfolios, 5 downside risk-sorted portfolios, 5
maturity-sorted portfolios, 5 credit rating-sorted portfolios, 5 intermediary factor (He, Kelly, and Manela, 2017) beta-sorted portfolios, 5 idiosyncratic
volatility-sorted portfolios, and 5 long-term reversal portfolios. 95% confidence intervals for parameters, based on bootstrapping with 5,000 replications,
are reported in square brackets. The cross-sectional R̄2 is defined as 1−varc(E(Rei )− R̂ei)/varc(E(Rei )) where i is a test asset and R̂ei is the predicted
average excess return of portfolio i. 95% confidence intervals for R̄2 are reported in square brackets. The pricing error is measured by RMSE

RMSR where

RMSE =
√

1
N

∑N
i=1(E(Rei )− R̂ei)2 and RMSR =

√
1
N

∑N
i=1E(Rei )

2. ‘R̄2 with same γ’ and ‘RMSE
RMSR with same γ’ report the pricing performance by

imposing γ estimated using all portfolios. Time period spans from March 1984 to December 2019. Unconditional pricing errors ζ are multiplied by 100
for ease of exposition.

Assets Credit Spread Downside Maturity Rating Intermediary IdioVol LT Reversal All
portfolios portfolios portfolios portfolios portfolios portfolios portfolios portfolios

ζ (%) 0.64 0.48 0.74 0.83 0.42 0.67 0.39 0.65
[0.05 1.1] [0.06 0.81] [0.34 0.98] [0.17 1.21] [-0.14 1.07] [0.16 0.96] [-0.29 1.2] [0.21 1]

γ 20.94 22.14 -18.00 17.24 26.00 18.70 25.85 20.62
[-14.37 30.61] [-27.84 31.52] [-22.69 28.05] [-1.81 29.66] [-24.14 34.83] [-25.05 30.32] [7.24 34.33] [1.26 28.81]

R̄2 0.97 0.99 1.00 0.89 0.72 0.94 0.51 0.85
[0.06 0.99] [0.68 1.00] [0.75 1.00] [0.01 0.97] [0.00 0.98] [0.47 0.99] [0.10 0.79] [0.21 0.92]

R̄2 with same γ 0.97 0.98 0.69 0.80 0.63 0.91 0.47 0.85
RMSE
RMSR 0.06 0.03 0.01 0.05 0.09 0.07 0.18 0.11
RMSE
RMSR with same γ 0.06 0.07 0.11 0.07 0.11 0.11 0.19 0.11
Number of assets 10 5 5 5 5 5 5 40
Number of asset-month 4260 2130 2130 2130 2070 2130 2090 16940
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Figure A.1. Decomposition of Bond Risk Premium
This figure plots the decomposition of bond risk premium into the short-run risk component and the long-run
risk component. The short-run risk component is computed by imposing no macroeconomic uncertainty. The
long-run risk component is computed by subtracting the short-run risk component from the baseline model
where both short- and long-run risk components are present. In Panel A, we vary the leverage ratio from 10%
to 80%. In Panel B, we vary convergence rate to the long-run from 0.5646 to 0.9646 (0.7646 for the baseline),
fixing the leverage ratio to 40%. In Panel C, we vary risk aversion γ from 5 to 15 (10 for the baseline), fixing
the leverage ratio to 40%. Other parameter values are reported in Table IA12.
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Figure A.2. Decomposition of Equity Premium with Leverage Ratio
This figure plots the decomposition of equity risk premium into the short-run risk component and the long-run
risk component. The short-run risk component is computed by imposing no macroeconomic uncertainty. The
long-run risk component is computed by subtracting the short-run risk component from the baseline model
where both short- and long-run risk components are present. We vary the leverage ratio from 10% to 80%.
Other parameter values are reported in Table IA12.
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Figure A.3. CEX 20-Qtr Consumption Growth and NIPA Consumption Growth
This figure plots the NIPA consumption growth (1 quarter and cumulative 20 quarters) and the CEX 20-quarter
consumption growth rates. The gray background shows the NBER recession.
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Figure A.4. Expected Consumption Growth Et[∆ct+1] Implied From VAR
This figure plots Et[ct+1 − ct] implied from VAR specified in Section 2.2. For each consumption series, we
regress it on the same set of state variables shown in Table 6, and plot the fitted value.
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