

45.B.Z (moder an
$$\in$$
 box with consumers of L -D utility:

 $U_1(X_{11}, X_{21}) = X_1^R X_{21}^{1-R} = U_2(X_{12}, X_{22}) = X_1^R X_{21}^{1-R} = (u_{11}, u_{22}) > 0$

Solve for equilibrium price ratio + allocations.

How do these change of a differential Δ in W_{11} ?

Consumer $f: Max (U(x) = X_1^R X_{21}^{1-R} - \lambda [\rho_1 X_{11} - \rho_2 X_{21} - \rho_0]]$

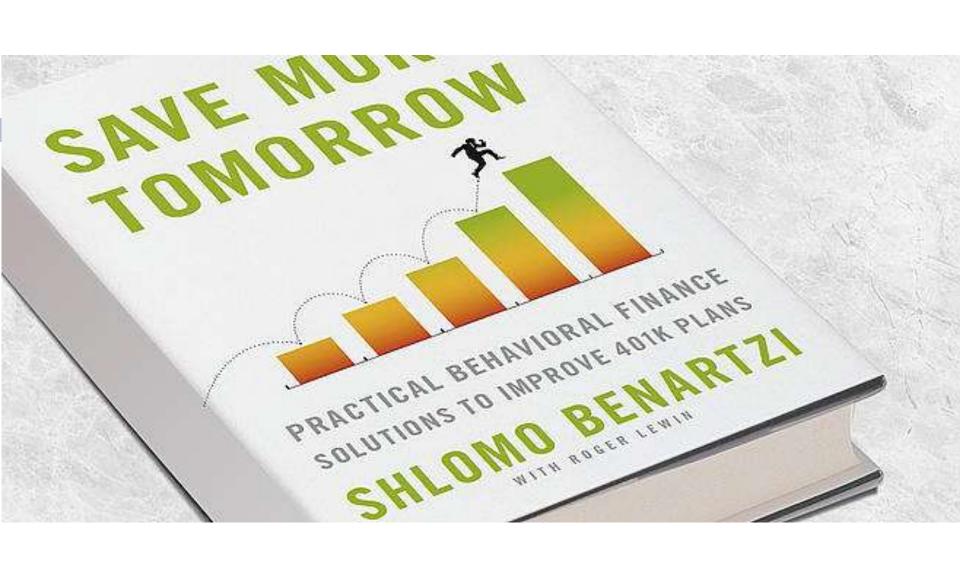
FOC: $\frac{\partial U}{\partial X_1} = (1-\kappa)X_1^R X_{21}^{1-R} - \lambda \rho_1 = 0$
 $\frac{\partial U}{\partial X_1} = (1-\kappa)X_1^R X_{21}^{1-R} - \lambda \rho_2 = 0$
 $\frac{\partial (X_1^{R-1} X_{21}^{1-R} - \lambda \rho_2)}{(1-\kappa)X_1^R X_{21}^{1-R} - \lambda \rho_2} = \frac{\kappa}{\rho_2} \Rightarrow X_{21} = \frac{\rho_2}{\rho_2} X_{11} (\frac{1-\kappa}{\kappa})$
 $P_1 X_{11} = P_1 X_{21}^{1-R} = N \rho_2 \Rightarrow P_2 X_{11} = \frac{\rho_2}{\rho_2} \Rightarrow P_2 X_{11} = \frac{(1-\kappa)\rho_1 \sigma_1}{\rho_2}$
 $P_2 X_{11} = P_2 X_{21}^{1-R} = P_2 = P_2 = \frac{\rho_2}{\rho_2} X_{11} = \frac{(1-\kappa)\rho_1 \sigma_1}{\rho_2}$

Three Simple Insights



egular Clean Plus Clean Super Clean ULTRA94 \$/LITRE CALTTRE ¢/LITRE PUSH TO START PUSH TO START OCTANE PUSH TO START OCTANE 87 39 OCTANE PUSH TO START OCTANE

Getting Flu Shots



Themes

- 1) Heuristics versus deliberation
- 2) Information overload
- 3) Limited attention
 Passive acceptance
- More disclosure ≠ More comprehension ≠ Better use of information
- 5) Format matters
- 6) Disclosure could have perverse effects
- 7) Effective disclosure = Simplicity + Relevance + Customizability + Timing

Further Readings

