Using Machine Learning to Analyze Disclosure Narratives

1st Annual Rotman CPA Ontario Centre for Accounting Innovation Research Conference

Jared Jennings
Washington University in St. Louis
Importance of Machine Learning (ML)

• “Machine learning combined with natural language processing can tell portfolio managers how bullish a CEO sounds in an earnings call *by mining transcripts for specific language it was trained to identify.*” (Barron’s 4/7/18)

• “What we’re not doing is automating investing decisions. We’re exploring and trying to enhance our existing models....” (Tim Cohen – Fidelity)
What is supervised ML?

1) Future cash flows
2) Future earnings surprises
3) Credit Default Swaps (CDS)

Language from Firm Disclosures
Advantages of ML?

• Allows the researcher to examine relations that might not be possible with standard statistical techniques

• **Automates** the identification of narrative patterns using minimal researcher intervention

• May help to identify relevant words that are **unknown** or difficult to identify

• Researchers can apply ML to a **variety** of
 – Outcome variables
 – Languages
 – Disclosures
Disadvantages of ML?

• Relies on statistical methods to build a model vs. researcher intuition
 – Many words identified may not intuitively relate to the outcome variable
 – May introduce “noise” into our measure

• Several things can be done to reduce the likelihood that one is simply identifying a statistical relation
 – Examine word lists
 – Hold-out sample (i.e., out-of-sample tests)
Machine-learning Methods

- Support vector regressions (SVR)
- Random Forest Regression Trees (RF)
- Supervised Latent Dirichlet Allocation (sLDA)
- Unsupervised Latent Dirichlet Allocation (LDA)
Machine Learning Techniques (SVR)

\[\text{Outcome Variable}_{i,q+1} = w_0 + \mathbf{w} \cdot \mathbf{x}_{i,t} + e_{i,t} \]

- Where \(\mathbf{x} \) is a matrix of one and two-word phrase counts and \(\mathbf{w} \) is a vector of regression coefficients

\(\mathbf{w} \) cannot be estimated with OLS

SVR can estimate \(\mathbf{w} \)

\[
\begin{aligned}
\text{minimize} & \quad \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{t \in \text{Train}} g_\varepsilon (e_t) \\
\end{aligned}
\]
Machine Learning Techniques (SVR)
Machine Learning Techniques (sLDA)

• sLDA jointly models the language in documents and a response variable
 – Finds latent topics that best predict responses for out-of-sample documents (Blei and McAuliffe, 2007)

• sLDA identifies *predictive* topics by:
 – Assessing the co-occurrence of words within documents
 – Allowing the response to be a function of the topic frequencies in the documents
sLDA vs. LDA

- **LDA** – text categorization
 - Unsupervised LDA topics better at identifying genres
 (e.g., drama, action, horror)

- sLDA – prediction
 - Supervised LDA topics better at identifying sentiment
 (e.g., excellent, terrible, average)
Machine Learning Techniques (RF)

- Randomly select a subset of observations and a subset of all available features (i.e., one- and two-word phrases)
- Builds a tree picking the partition at each node that minimizes the dependent variable’s in-sample sum of squared error within the resulting subsets

![Decision Tree Diagram]

Terminal node is the predicted value.
The average predicted value for all trees is the final predicted value.
Research Papers

Frankel, Jennings, Lee (2016)

Disclosure
- Conference Calls
- MD&A

Method
- SVR

Prediction
- Accruals
- Future Operating CFs
RESULTS: Frankel, Jennings, Lee (2016)

Prediction

Pred(Accruals) Pred(CFO)

Actuals

Accruals CFO

9.7% of the variation in accruals

45.8% of the variation in future Operating Cash Flows

Incremental to other known determinants
RESULTS: Frankel, Jennings, Lee (2018)

7.6% of the variation in the future earnings surprise

Incremental to other known determinants

Prediction

Pred(Earn Surp)

Actuals

Earn Surp
Donovan, Jennings, Koharki, Lee (2018)

Disclosure
- Conference Calls
- MD&A

Method
- SVR
- RF
- sLDA

Prediction
- CDS
RESULTS: Frankel, Jennings, Lee (2018)

Incremental to other known determinants

Prediction: Pred(CDS)

Actuals:
- CDS (52%)
- Bankruptcy (25%)
- Spreads (27%)
- Covenant Violation (5.8%)
- Downgrade (5.6%)
Takeaways

• ML can be useful when enhancing existing models

• ML can explain an economically significant portion of the variation in an outcome variable

• ML can identify information that is not captured by other accounting or economic signals
THANK YOU!