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OM in Global Health — Broad Opportunity

The potential impact is significant
• Life-expectancy in sub-Saharan Africa is 57 years (79 in US)

• Child mortality is 8.3% (0.6% in US)

• HIV prevalence is 9% (0.3% in US)

• Among top-10 killers are Pneumonia, HIV/AIDS, Diarrhoea, TB, Malaria

OR/OM is the relevant approach
• Funds, medicine, and technology are increasingly available — the challenges are operational

• Programs initiated on small cost-effectivenes studies — cost, feasibility, impact at scale?

The time is now
• Data is becoming available

• Healthcare delivery programs are being scaled up and professionalized

The research is interesting
• Health delivery programs in sub-Saharan Africa are structurally different

• Programs are complex and underanalyzed

• Research on extreme conditions can result in useful general insights



Tuberculosis Worldwide



Tuberculosis Treatment and Challenges

We have the treatment but treatment completion rates are low, partly for

behavioral reasons.
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Tuberculosis Treatment and Challenges

We have the treatment but treatment completion rates are low, partly for

behavioral reasons.

• ... takes a long time

• ... significant side-effects

• ... requires frequent clinic visits

• ... has associated stigma





Keheala Platform

Treatment Adherence Support

• Patient verification

• Reminders

• Sponsor outreach

USSD Based

• Works on ’dumb phones’

• Only requires network connection

Based on Behavioral Principles

• Increase observability

• Minimize plausible deniability

• Establish a norm

• Use pro-social motivation

It’s time to verify!

Hi Jane, it’s Jill.  I saw that you 
didn’t verify today or yesterday.  Is 

there anything I can do to help?

Reminders and self-verification

Accountability and support

Congratulations!  Together, we’re 
kicking TB out of Kenya!

Motivation

Congratulations!
You made the heroes circle!

Yoeli et al. 2013, Andreoni et al. 2017, Dana & Cain 2008, Goldstein et al. 2008, Allcott 2011, Bicchieri 2016, etc.
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Data Source: Keheala RCT

• Design
• 1105 patients

- 570 on platform
• 17 clinics
• Nairobi, Kenya
• Feb 2016 - Dec 2016

• Data collected
• Patient socio-demographic info
• Health outcomes:

- Bad: LTFU or D or F

- Good: TC or C
• Engagement outcomes:

-Daily verification
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Keheala RCT Outcomes
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Research Questions

Research Objective:

“Develop an implementable policy for personalization of treatment adherence support”

Pre-Enrollment Research Question:

1. Who should be enrolled?

- Who benefits from treatment adherence support?

}
Prediction

Post-Enrollment Research Questions:

1. Does outreach improve engagement?

- What is the population-level average effect of outreach?

}
Causal inference

2. Can we identify at-risk patients?

- Who is likely to cease verification?

- Who is likely to have a bad outcome?

Prediction

3. Does outreach improve engagement among at-risk patients?

- What is the effect of outreach on at-risk patients?

}
Causal Inference
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Pre-Enrollment Personalization

Prediction Accuracy

• Question: Can we predict outcomes?

• Data: Full population (Control: 535, Treatment: 570)

• Outcome: Unsuccessful treatment (LTFU, D, F) vs Successful treatment (C, TC)

• Features: Only demographics, no engagement data *
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Logistic regression (AUC = 0.76)
KNN (AUC = 0.64)
CART (AUC = 0.63)
Random forest (AUC = 0.66)



Pre-Enrollment Personalization

Counterfactuals

• Question: What is the individual impact of Keheala?

• Analysis: Individual outcome prediction with / without Keheala.
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Counterfactuals

• Question: What is the individual impact of Keheala?

• Analysis: Individual outcome prediction with / without Keheala.

0.0 0.2 0.4 0.6 0.8 1.0
Predicted probability of a bad outcome

0

25

50

75

100

125

150

175

Nu
m

be
r o

f p
at

ie
nt

s

Control
Intervention

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Predicted impact of TAS

0

10

20

30

40

50

60

70

Nu
m

be
r o

f p
at

ie
nt

s



Pre-Enrollment Personalization

Managerial Implications

Enrollment threshold if:
𝐶𝑜𝑠𝑡 𝑜𝑓 𝑇𝐴𝑆

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑇𝐴
> 0.05

Enrollment threshold if:
𝐶𝑜𝑠𝑡 𝑜𝑓 𝑇𝐴𝑆

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑇𝐴
> 0.20



Research Questions

Research Objective:

“Develop an implementable policy for personalization of treatment adherence support”

Post-Enrollment Research Questions:

1. Does outreach improve engagement?

- What is the population-level average effect of outreach?

}
Causal inference

2. Can we identify at-risk patients?

- Who is likely to cease verification?

- Who is likely to have a bad outcome?

Prediction

3. Does outreach improve engagement among at-risk patients?

- What is the effect of outreach on at-risk patients?

}
Causal Inference



1. Does outreach improve engagement?

Identification strategy:

• Reminder policy:

Each day: 1-3 reminders

• Outreach policy:

Day 1 of non-verification:

Sponsor message

Day 2 of non-verification:

Sponsor message

Day 3 of non-verification:

Refer to health worker

• Reality:
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Day 1 of non-verification:

Sponsor message

Day 2 of non-verification:

Sponsor message

Day 3 of non-verification:
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∼ 40% of non-verifiers not contacted at all.
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Sponsor message

Day 2 of non-verification:
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1. Does outreach improve engagement?

Identification strategy:

• Reminder policy:

Each day: 1-3 reminders

• Outreach policy:

Day 1 of non-verification:

Sponsor message

Day 2 of non-verification:

Sponsor message

Day 3 of non-verification:

Refer to health worker

• Reality:

Capacity issue?

Calendar day averages

Mean

Number of active patients 260

Number of non-verifiers 97

Number of contacts made 24



1. Does outreach improve engagement?

Identification strategy:

clogit (Future Verifieri,t )︸ ︷︷ ︸
1. Next day verification

2. Next week verification

= β Sponsor Contacti,t︸ ︷︷ ︸
Impact of outreach

+γi Patienti︸ ︷︷ ︸
Patient

FE

+ λi,tXi,t︸ ︷︷ ︸
Controls:

- Weekday
- Reminders

- Previous day
and week

verification

+ εi,t︸︷︷︸
Errors

clustered
by patient

• Conditional Logistic Regression to absorb patient FEs

• 63,907 patient-day observations (77%)

• 453 unique patients (76%)
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1. Does outreach improve engagement?

Next Week Verifier Next Day Verifier

(1) (2)

Sponsor Contact 1.326∗∗∗ 1.362∗∗∗

(0.067) (0.062)

Last Week Verifier 2.566∗∗∗ 2.509∗∗∗

(0.171) (0.120)

Last Day Verifier 2.432∗∗∗ 2.287∗∗∗

(0.099) (0.091)

Days On Platform 0.996∗∗∗ 1.000

(0.001) (0.001)

Weekdays X X
Number of Reminders X X

Observations 63,907 75,237

Pseudo R2 0.13 0.10

Exponentiated coefficients; Standard errors in parentheses
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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2. Can we identify at-risk patients?

Framework

Day 0:

Patient joins platform

← Day d → Day D:

Final outcomes observed

Input data at day d

Outcome 1:

Next week’s usage

Outcome 2:

Final outcome

Features:

• Demographics

• Recent reminders

• Recent verification

• Recent messages

• Recent options accessed

• Time spent on platform

• Longest verification streak

• Longest non-verification streak

Outcomes:

• Next Week Verifieri,t

• Bad Outcomei



2. Can we identify at-risk patients?

Prediction outcome 1: Next Week Verifieri,t
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Day 0 (AUC = 0.56)
Day 10 (AUC = 0.89)
Day 65 (AUC = 0.89)
Day 120 (AUC = 0.89)



2. Can we identify at-risk patients?

Prediction outcome 2: Bad Outcomei
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3. Does outreach work for at-risk patients?

Defining at-risk patients

• At Riski,t = 1 if Pred[Next Week Verifieri,t = 0] and Pred[Bad Outcomei,t = 1]

• Not At Riski,t = 1 if At Riski,t = 0

Identification strategy revisited:

clogit (Future Verifieri,t )︸ ︷︷ ︸
1. Next day verification

2. Next week verification

= β1 Sponsor Contacti,t ∗ At Riski,t︸ ︷︷ ︸
Impact of outreach
for at-risk patients

+ β2 Sponsor Contacti,t ∗ Not At Riski,t︸ ︷︷ ︸
Impact of outreach

for not-at-risk patients

+ γi Patienti︸ ︷︷ ︸
Patient

FE

+ λi,tXi,t︸ ︷︷ ︸
Controls:

- Weekday
- Reminders

- Previous day
and week

verification

+ εi,t︸︷︷︸
Errors

clustered
by patient



3. Does outreach work for at-risk patients?

Next Week Verifier Next Week Verifier Next Day Verifier Next Day Verifier

(1) (2) (3) (4)

Sponsor Contact 1.285∗∗∗ 1.332∗∗∗

(0.088) (0.073)

Sponsor Contact

* Not At Risk

Sponsor Contact

* At Risk

Last Week Verifier 2.187∗∗∗ 2.224∗∗∗

(0.158) (0.120)

Last Day Verifier 2.249∗∗∗ 2.125∗∗∗

(0.109) (0.100)

Days On Platform 0.998 1.000

(0.002) (0.001)

Weekdays X X
Number of Reminders X X

Observations 33,867 47,748

Pseudo R2 0.088 0.074

Exponentiated coefficients; Standard errors in parentheses
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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Average impact of
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Post-Enrollment Managerial Implications

Sponsor outreach summary statistics (per calendar day)

• 14.5 patients contacted each day

— 12.1 classified as at-risk

— 2.4 classified as not-at-risk

• 68.8 at-risk patients not contacted

Takeaway

• ∼ 16% of sponsor outreach is “misplaced”

• ∼ 600 sponsor outreach instances should be re-prioritized



Conclusions and Next Steps

Objective

“Develop an implementable policy for personalization of treatment adherence support”

Pre-enrollment results

• Demographic data allows for decent (AUC=0.76) individual impact predictions

• Allows for initial assignment of treatment adherence support intensity

Post-enrollment results

• Does personal outreach improve engagement?

Yes, odds of next week verification increase by a factor of 1.3

• Can we identify at-risk patients?

Yes, using engagement info (at d = 120) we predict outcomes with AUC=0.81

Yes, using engagement info (at d = 120) we predict engagement with AUC=0.89

• Does personal outreach improve engagement of at-risk patients?

Yes, at-risk patients are as responsive to sponsor outreach as other patients

Future work

• Incorporate prediction accuracy into pre-enrollment recommendation

• Generate counterfactuals for post-enrollment recommendation

• RCTs to evaluate personalized Keheala interventions
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Demographic Features


