When Are Doctors Most Needed in the Emergency Room: Risk-Adaptive Physician Shift Scheduling

Yichuan Ding¹ Joint Work With Yiwen Jin, Mahesh Nagarajan, Eric Park, Eric Grafstein, Garth Hunte

March 9, 2020

¹Desautels Faculty of Management, McGill University

Emergency Departments

 High congestion together with extended waiting time in the Emergency Departments.

Figure 1: ED Waiting Area

Waiting time

Figure 2: Patients Flow in ED

Long Waiting time for Patients

	Expected Length					
	Wait Time What does this show me?	of Stay What does this show me?	Status What does this show me?			
Vancouver General Hospital	9 times out of 10, you will		e a doctor within.			
Patients of ages 17 and older seen	03:52	04.30				
St. Paul's Hospital	01.52	03.45				
Patients of all ages seen	01.02	00.10				
Richmond Hospital Patients of all ages seen	02:07	03:30				
Liene Cete Meenitel						
Patients of all ages seen	02:49	03:45	\checkmark			
Mount Saint Joseph Hospital	01.05	02.45				
Patients of all ages seen	01.00	02.40				
UBC Hospital (UBCH) Patients of all ages seen	01:03	02:45				
UBCH is for mild to moderate illness						
City Centre Urgent & Primary Care Centre Patients of all ages seen UPCC is for mid to moderate illness	00:25	01:15	\checkmark			
	HR:MIN	HR:MIN				

Figure 3: A snapshot of the ED waiting time announcement (edwaitingtimes.ca).

Bottleneck Resources in ED

- ► ED bottleneck resources: physicians, beds, etc.
- ► The long waiting time has multiple reasons: inefficient staffing schedules, insufficient beds at inpatient unit, etc.

Since we focus on the first-stage waiting time (Time to See MD), we focus on physicians.

Research Question

How can we adjust physicians' shifts to achieve better outcome?

ED Waiting Census

Figure 4: The average of waiting census (2018-2019).

The Current Schedule

Figure 5: The Intra-day Physician Shift at SPH.

Demand-Based Scheduling

- ED administrator sets the physician schedules based on historical arrival data.
- Congestion-Minimization Way of Thinking.

Figure 6: Average waiting census and staffing level at SPH (2018-2019).

Is Congestion-Minimization the Right Objective?

The underlying assumption for congestion minimization is that the waiting cost is linear in cumulative waiting time and is identical for all patients. However, is this the truth?

Patient mix

Case 1: three triage-2 patients at 1pm; Case 2: three triage-3 patients at 4pm. It is better to set the shift to cover 1pm rather than 4pm.

Convex waiting cost

Case 1: two triage-2 patients have waited ten and thirty minutes, respectively at 1pm;

Case 2: two patients with the same physical attributes have waited twenty minutes at 4pm.

It is better to cover 1pm rather than 4pm.

The Waiting Cost is Nonlinear and Patient Specific

- Most congested period \neq Most costly period.
- Cost depends on individual attributes.
- The cost is convexly increasing in waiting time. (Osuna et al. (1985), Bernstein et al. (2009), Saghafian et al. (2014)).

Challenges in Measuring the Waiting Cost

- The "waiting cost" here includes physiological risks as well as the potential social impact and lacks of a clear measurement.
- Calibrating the comprehensive and integrated waiting cost of patients in the first stage is not easy: short time, not enough data collected. (different from the inpatient unit)

Our Proposed Method for Measuring Waiting Cost

- ► Assumption: physician picks patients for cost minimization.
- ► We use physician's decisions to infer the waiting cost of patients in an indirect way, i.e., the physician-perceived cost for patients.

Overview of the Work

▶ We first estimate the patients' waiting cost based on a framework.

Ding Y, Park E, Nagarajan M, Grafstein E. Patient prioritization in emergency department triage systems: An empirical study of the canadian triage and acuity scale (CTAS). Manufacturing & Service Operations Management. 2019 Oct;21(4):723-41.

We then formulate a stochastic optimization to minimize the total waiting cost (estimated) and derive the optimal physician shift.

Ding Y, Jin Y, Hunte G. When are doctors most needed in the emergency department? Risk-adaptive physician shift scheduling. Working paper.

Literature Review

Based on methodology: three streams of literature on ED operations.

- Queueing. Green et al. (2006), Tezcan et al. (2010), Huang et al. (2015), Baron et al. (2019), Chan et al. (2019), Bijvank et al. (2019), Liu and Sun (2019), Sun et al. (2019), Chen et al. (2019).
- Optimization. Ikegami et al. (2003), Gutjahr et al. (2007), Burke et al. (2014), Saghafian et al. (2015), Liu et al. (2018), He et al. (2019), Rastpour et al. (2020).
- Empirical. Green et al. (2013), Kim et al. (2014), Batt et al. (2017), Baron et al. (2019), Ding et al. (2019).

► The doctors observe the same information as we researchers do.

POE	TEST, LI	SA	×	1											
Trac	king List														
DD	octor E	DAI	Beds	ED Av	ailable	Staff ED Look Up ED Pendin	g Lab	Doctor ED All Beds ED Availa	ble Staff ED Look	Up ED P	ending La	b ED Do	octor	ED All B	eds
Det	ant (200	ETECT		A ONE	214	UP. 7 Tetal: 20 Aug 1 05: 601	22 Eiker	My Patients and Unarries -							_
Pau	ent CPO	EIES	, LI3	AONE		WE 7 TOTAL 20 AVG LOS. OUT	52 Pitter	my Patients and Unassign							
45	1		7 2			1 A 🔒									
	Bed 1	C	S !	VI	F	Name	Age	Reason for Visit Comme	ent LOS	EP	MLP	RN	Sign	ECG	La
	05,A				2	LABTEST, TWO	34 y 1		59:10	Brown			1	2/0	12
	06,A	Ľ	ŵ	204	3	RODRIGUEZ, SHAE	31 y O	1:Intentional dru	31:24			Dana			
*	07,A	Ľ			1	LABTEST, THREE	35 y.O	1:Altered mental ct done	85:20					4/0	9/8
	09,A					M32,		1:MVC	69:52						
	10,A	Ľ				TEST, VIDEO	57 y 1		69:52					1/0	
	11,A			*	4	TEST, DANA	35 y O	1:Potential strok	00:20		Smith	shae	Ľ		
	14,A	Ľ				TEST, FLOWSHEET	37 y 🔾		69:49						
	15,A	Ľ	ŵ.		2	TEST, TIRED	85 y 🧿	1:Chest pain	78:09			Dana			
	16,A				5	TRAIN, TECH	30 y 🧿	1:Abdominal pai	88:13					1/0	
	17,A					COVENTRY, EIGHT	45 y O		01:36		Smith	Dana	1		
	30,A	Ľ		н		TEST, STATUSORD	65 y O		25:40						
*	OF1,A				3	LABTEST, ONE	35 y O	1:Abdominal pai	85:20	Brown			2	1/0	7/6
_	PA					M24,		1:Chest pain	69:55						
Г	WR					VCREGCLERK, CER	26 y 📲		66:26						
Т	WR				4	TUESDAY, JUDY	27 y 1	1:Wrist injury - N	64:10			Shae			
	WR					ASC, TRAIN	30 y 1		63:44						
	WR					PTACCESS, AUTH	39 y 1		58:59						
	WR					TEST, EFORMS	41 y 1		65:38						
E	WR				3	CPOETEST, LISA ON	59 y O	1:Psychiatric pro	0:40						
Т	WR				3	TESTFN, BOB	69 y 🧿	1:Abdominal pai	44:27	l rown			Z		

Figure 7: A snapshot of the Patient Care Information System (PCIS).

Estimated Marginal Waiting Cost Function

Figure 8: An approximate diagram of the estimated MWC

Available Dataset

- The data is at the patient visit level where each observation corresponds to a single patient visit to the ED.
- ► 1.2 million observations and 121 variables from April 2016 till March 2019 (fiscal year).
- Covers 6 major EDs in Metro Vancouver.

Estimated Marginal Waiting Cost

CTAS Fractile Response Objective

CTAS score	Triage	Target	Fractile
1	Resuscitation	Immediately	98%
2	Emergent	15 minutes	95%
3	Urgent	30 minutes	90%
4	Less urgent	60 minutes	85%
5	Non-urgent	120 minutes	80%

The Physician-Demand Index

- Using the estimated patient cost, we can infer which period is most costly.
- Interpretation: The index represents the reduction in the total waiting cost by adding one additional physician pick at certain time of a day.
- We search for the optimal shift adjustment using the physician-demand index.

Index Formulation

$$\mathsf{Index}(t) \equiv \int_t^{\gamma(t)} \max_{i \in \mathsf{Choiceset}(\mathsf{s})} \ C_i'(s) ds, \ \gamma(t) = \inf\{s | s \ge t, Q(s) = 0\},$$

Index Computation Results

Figure 10: The average index of two weeks along one day.

Adjusting Current Staffing Schedules

Figure 11: Likely change of the current staffing schedules.

Adjusting Current Staffing Schedules

Figure 12: Likely change of the current staffing schedules.

Future Directions

- Robust check for the model by considering seasonality, physician heterogeneity
- Running simulations to compare the performance of the index policy, an ad hoc policy and the current policy.
- ▶ We plan for implementation at our collaborating hospital.

THANK YOU !