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INTRODUCTION



BACKGROUND

• Arrival processes describe temporal demand for service in
queuing systems. It is the starting point of all subsequent
operations.

• Emergency departments:

• Capacity and staffing plans
require a good
understanding of patient
arrival patterns.

• Poor forecasting of demand
can rob patients of timely
critical care.

• Many other examples where accurate models for arrivals
are critical to managers
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COMMON PRACTICE

• How are arrival rates specified or estimated in practice
from time stamps of past arrivals?

• Specify a period (say, a week) such that the arrival pattern
repeats itself judged from experience

• Specify a bucket size (say, an hour) and count the arrivals
in each bucket

• Average the bucket counts across periods
• (Optional) fit the piecewise constant curve by a function
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STRENGTHS AND WEAKNESSES

• Strengths
• Robust
• No need to specify a model (nonparametric)
• Efficient to compute

• Weaknesses
• Prior knowledge of the frequency
• Cannot deal with multiple periodicity
• Not easy to interpret
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OUR PROPOSAL

• An alternative formulation

λ(t) =
p∑

k=0

ck cos(vk t + ϕk ),

frequencies vk , amplitudes ck , phases ϕk .

• Flexibility: any periodic or non-periodic functions can be
approximated (Fourier analysis)
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OUR PROPOSAL

• Interpretability

• May open ways to tractable analysis [Eick et al., 1993]
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ESTIMATION



ESTIMATING ARRIVAL RATES FROM THE DATA

• Data: t1 < t2 < · · · < tN are time stamps of past arrivals

• To estimate the frequencies, use spectral (Fourier) analysis

• To estimate the amplitudes and phases, use least square
estimators
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FREQUENCY IDENTIFICATION

• Discrete Fourier
transform:

Ñ(v) ≜ 1
T

∣∣∣∣∣
∫ T

0
e−2πivtdN(t)

∣∣∣∣∣
=

1
T

∣∣∣∣∣
N∑

i=1

e−2πivti

∣∣∣∣∣
to approximate

λ̃(v) =
1
T

∣∣∣∣∣
∫ T

0
e−2πivtλ(t)dt

∣∣∣∣∣ .

• Ideally we should
see the right
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BUT. . .

• In fact, because of the noise in N(t), and the leakage (finite
T ), we are more likely to see
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NOT A BIG DEAL? OR. . .

• Frequency estimation error cannot be larger than O(1/T )

for consistent amplitude recovery
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THE SOLUTION

• Our innovation: Weight the number of arrivals at time t with
a window function w(t).

Ñw (v) ≜ 1
T

∣∣∣∣∣
N∑

i=1

w(ti)e−2πivti

∣∣∣∣∣

• Looks biased, but works: ∥v̂k − vk∥ = O(1/T ) even when
vk and vk+1 are O(1/T ) close.
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THE PROPOSED PROCEDURE

1. Compute the windowed DFT:
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THE PROPOSED PROCEDURE

2. Compute a data-driven threshold τ :
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THE PROPOSED PROCEDURE

3. Pick peaks above τ , remove a neighborhood:
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THE PROPOSED PROCEDURE

4. Repeat until no peaks are above τ :
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THE PROPOSED PROCEDURE

5. Based on the estimated frequencies v̂k , we can proceed to
estimate the amplitudes and phases by the least squares.

• We can reorganize the observations into buckets of width
dt : [0,dt ], [dt ,2dt ], . . . , [T − dt ,T ].

• The observed Y is 0 or 1 for that bucket.

• Least squares: find ck,1 and ck,2 so that

λ̂(t) =
p∑

k=0

ck cos(v̂k t + ϕk ) =

p∑
k=0

ck,1 cos(v̂k t) + ck,2 sin(v̂k t)

minimizes the MSE of the T/dt observations. The same as
linear regression.

• If dt → 0, then (X T X )−1X T Y has a closed form.
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EMPIRICAL STUDY



ARRIVAL DATA FROM AN EMERGENCY DEPARTMENT

Data characteristics:

• Time stamps of 168,392 patent arrivals from 2014 Jan to
2015 Sept (T = 652 days)

• Emergency Severity Index (ESI) level of each patient
• Level 1 most severe (e.g., cardiac disease); level 5 least

severe (e.g., rash)

• We analyze ESI level 2 and level 3 to 5 separately (level 2
are treated in a separate ward)
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ESI LEVEL 2

• 66,240 patient arrivals
• Estimated frequencies: v̂1 = 1.00, v̂2 = 2.00, v̂3 = 3.00,

v̂4 = 0.714, v̂5 = 0.857, v̂6 = 1.143
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INTERPRETATION

• v̂1 = 1.00, v̂2 = 2.00, v̂3 = 3.00 make up the daily cycle.

• v̂4 = 0.714 (5/7), v̂5 = 0.857 (6/7), v̂6 = 1.143 (8/7) make
up the weekly cycle.

• There are two peaks in a day; the intensity of arrivals fade
steadily into the weekend.
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ESI LEVEL 3 TO 5

• 99,205 patient arrivals
• Estimated frequencies: v̂1 = 1.00, v̂2 = 2.00, v̂3 = 3.00,

v̂4 = 0.857
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INTERPRETATION

• Only one weekly cycle is present v̂4 = 0.857. The weekly
cycle is weaker than level 2.

• Unable to capture the localized spikes on Monday, will
need more weekly cycles

• In both cases
• No monthly cycles are identified
• No seasonal cycles are identified, probably because T is

not large enough
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SUMMARY

We propose a sine-wave-based approach to the modeling and
estimation of non-stationary arrival processes. Compared to
the common approach:

• Not requiring prior knowledge of periods

• Can handle conflated multiple periodicity

• Much sparser (3p vs. hundreds of parameters)

• May provide interpretable insights

• Computation is not straightforward

• Sensitive to the threshold

• May miss localized spikes
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