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Process flexibility

* Well-known and well-studied, especially within the
manufacturing context
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* Broadly applicable concept
— Radiation therapy treatment network design
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Radiation therapy
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Treatment flexibility problem

* Linacs are flexible machines and large cancer centers
have many of them
— The good: Ability to deal with supply/demand uncertainty

— The bad: Device and training costs to being overly flexible

* Operational goal: Minimize overtime while satisfying
daily demand

 Complicating factor: machine downtime

e Contribution: a machine learning-based method to
design sparse (treatment) networks
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The linac network at Princess Margaret
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Existing research in process flexibility

* Symmetric/balanced: focus is typically on theory
— E.g., optimality of the long chain, Simchi-Levi and Wei 2012
e General: focus on heuristics to design sparse
networks, guided by deep theoretical insights

— Chou et al. 2011, Simchi-Levi and Wei 2015, Feng et al.
2017, Yan et al. 2017

suggested
features Mathematical arc
—’ . —}
analysis




Applied Optimization Lab, University of Toronto

. AppliedOptimization Lab, University of Toronto_
Our idea: Part 1

* Replace the deep mathematical analysis with simple
machine learning idea

— Bello et al. 2016, Khalil et al. 2017, Larsen et al. 2018, etc.
Neural
network

* “Predict and search” algorithm (PS)
— Search size: Full optimization for top candidates

candidate
arcs
—_—

— Batch size: Number of arcs to add
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Our idea: Part 2

* Prediction enables quick search over huge
neighborhood, including backtracking

Neural
—_
network

* “Predict and search with revisionist history” (PSRH)

candidate
arcs
—_—

* This is particularly useful if an intermediate arc
makes a small, closed chain
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Neural network model

* Train using adjacency matrix and max flow value

 Example performance on 10x10 network:
— 5000 demand realizations from truncated N(100,40)
— 20,000 flexibility designs with between 11-25 arcs
— 90/10 training/testing
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Comparison against existing approaches

e Existing approaches
— Expander (Chou et al., 2011)
— UW-PCI/W-PCI (Simchi-Levi and Wei, 2015)
— MDEP (Feng et al., 2017)
— DVBH (Yan et al., 2017)

* Three test settings (Simchi-Levi and Wei, 2015)
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Comparison against existing approaches

 PS and PSRH are consistently competitive with best
approaches

* Some existing approaches perform well in certain
test settings but poorly in others

 Similar results for worst case, 10t percentile, etc.

Test setting #1 Test setting #2 Test setting #3
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Comparison against existing approaches

Table 3 Flexibility Design Heuristics Performance Comparison

Test Setting 1 Test Setting 2 Test Setting 3
10" Worst 10" Worst 10" Worst

pct. ratio Avg. pct. ratio Avg. pct. ratio

Initial 8.03 6.87 0.66 12.13 10.68 0.71 13.19 11.83 0.75
Avg Training  8.67 7.44 0.69 12.84 11.31 0.78 13.90 12.38 0.79

Network Avg.

Basclines  p & Training  9.07 7.87  0.80 13.18 11.65 087 1427 1274  0.88
Full Flexibility 9.39 8.06 1330 11.72 1435 12.83 _
Expander 861 7.40 0.73 13.08 11.48 0.82 14.31 12.82  0.86
Pristing W-PCI 004 7.82 0.74 1324 11.70 0.83 1428 12.82  0.85
H”“S. lf.g UW-PCI 899 7.68 0.73 13.22 11.67 083 1427 12.77  0.88
CULISLICS A\ IDEP 9923 7.96 083 1291 11.35 0.77 14.14 1255  0.82
DVBH 872 7.53 0.73 13.09 11.56 0.88 14.17 12.67  0.90
ML-based PS 9.02 7.72 0.77 1323 11.69 0.82 1424 12.82  0.87

Heuristics PSRH 9.23 795 0.79 13.22 11.68 0.79 14.32 12.82 0.89




Applied Optimization Lab, University of Toronto

Back to the linac flexibility problem
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Network parameters

e 15 linacs, 3 models

%)

15

(

* 36 patient groups

e 136 arcs £
* Capacity: 8AM - 630PM _
— Downtime data 2015-2017 TESFLS LS LSS F S

— 70% of days at least one machine experienced downtime

* MLC malfunction, software frozen, etc.
— Each linac has ~“9% chance of downtime on a given day
e Demand:

— Curative treatment data from 2015-2016
— Palliative demand assumed to be ~31% of total tx time
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Specializing the method to radiation therapy

e Two constraints added to
standard network flow model
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Designing a sparse treatment network
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Table 5 Comparison of Network Designs with Heterogenous LINACs.
Network Arcs Expected Max Flow 10" Percentile Worst Ratio (%)
PSRH 46 9058.36 (9.68) 8662.52 (45.32) 96.66 (0.07)
PSRH 56 9100.22 (17.85) 8706.25 (73.63) 98.17 (0.81)
PSRH 80 9103.69 (16.51) 8734.09 (81.14) 98.08 (0.98)
Existing PM 136 9105.96 (17.64) 8748.79 (84.53) 98.91 (1.36
Fully Flexible 540 9110.47 (17.74) 8755.09 (82.69) — 17
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Homogeneous linacs

* Homogeneous linacs can reduce average overtime by
27% and variability in overtime by order of
magnitude

Table 5 Comparison of Network Designs wi@NACS

Network Arcs Expected Max Flow 10" Percentile Worst Ratio (%)
PSRH 16 005836 (0.65) 866252 (45.32) 96.66 (0.07)
PSRH 56 . S5) 8706.25 (73.63) 98.17 (0.81)
PSRH 80 8734.00 (81.14) 98.08 (0.98)
Existing PM 136 8748.79 (84.53) 98.91 (1.36)
Fully Flexible 540 0110 47 (17 74) 8755.09 (82.69)

Table 7 Comparison of Network Designs meACS

P ——
Network Arcs Expected Max Flow 10" Percentile Worst Ratio (%)
PSRH 16 905525 (0.06) _8593.12 (0.00) 96.65 (0.09)
PSRH 56 0496-79(4-25) 8711.51 (36.92) 97.02 (0.12)
PSRH 80 w 8790.01 (8.92) 96.94 (0.15)
Existing PM 136 306112 10) 8786.54 (10.32) 96.94 (0.10)
Fully Flexible 540 9139.09 (0.31) 8820.00 (0.00) =

18
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Other insights

* Initial schedule matters a lot, due to presence of
reshuffling constraint

— Can get up to 40% of value of homogeneous linacs just by
adjusting initial schedule

— Suggests that two-stage approach is important
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* Process flexibility is a useful lens through which to
view many different problems

* Developed novel machine learning-based heuristic to
design sparse treatment network

— Likely to be most useful for large problems where
decisions need to be made often, perhaps in real time
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Thanks for listening!

Questions?

Timothy Chan

University of Toronto
tcychan@mie.utoronto.ca
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