Sparse Flexible Design for Radiation Therapy: A Machine Learning Approach

Timothy Chan University of Toronto

Joint with Daniel Letourneau, Benjamin Potter

Rotman Healthcare Analytics Roundtable 2020 March 9, 2020

Process flexibility

• Well-known and well-studied, especially within the manufacturing context

- Broadly applicable concept
 - Radiation therapy treatment network design

Radiation therapy

Treatment flexibility problem

- Linacs are flexible machines and large cancer centers have many of them
 - The good: Ability to deal with supply/demand uncertainty
 - The bad: Device and training costs to being overly flexible
- Operational goal: Minimize overtime while satisfying daily demand
- Complicating factor: machine downtime
- Contribution: a machine learning-based method to design sparse (treatment) networks

Applied Optimization Lab, University of Toronto

The linac network at Princess Margaret

136 arcs) Breast Group 1 Breast Group 2 Breast Group 3 Breast Group 4 SV01CNS Group 1 CNS Group 2 SV03CNS Group 3 Endocrine Group 1 SA04Endocrine Group 2 Eye Group 1 EA05Eye Group 2 Eye Group 3 EV06- -Eye Group 4 GI Group 1 EA07GI Group 2 GU Group 1 36 patient EA08 GU Group 2 Gynea Group 1 15 linacs NA09 Gynea Group 2 groups Head & Neck Group 1 NA10 Lung Group 1 Lung Group 2 NA11 Lymphoma Group 1 Lymphoma Group 2 NA12Lymphoma Group 3 Lymphoma Group 4 WA14 Lymphoma Group 5 Paediatrics Group 1 WA15 Paediatrics Group 2 Paediatrics Group 3 WV16 Palliative Group 1 Sarcoma Group 1 WA17 Sarcoma Group 2 Sarcoma Group 3 Sarcoma Group 4 Skin Group 1 LINACs Patient Groups

Elekta Infinity

Varian iX

Varian Truebeam

Existing research in process flexibility

- Symmetric/balanced: focus is typically on theory
 - E.g., optimality of the long chain, Simchi-Levi and Wei 2012
- General: focus on heuristics to design sparse networks, guided by deep theoretical insights
 - Chou et al. 2011, Simchi-Levi and Wei 2015, Feng et al.
 2017, Yan et al. 2017

Our idea: Part 1

- Replace the deep mathematical analysis with simple machine learning idea
 - Bello et al. 2016, Khalil et al. 2017, Larsen et al. 2018, etc.

- "Predict and search" algorithm (PS)
 - Search size: Full optimization for top candidates
 - Batch size: Number of arcs to add

Our idea: Part 2

• Prediction enables quick search over huge neighborhood, including backtracking

- "Predict and search with revisionist history" (PSRH)
- This is particularly useful if an intermediate arc makes a small, closed chain

Neural network model

- Train using adjacency matrix and max flow value
- Example performance on 10x10 network:
 - 5000 demand realizations from truncated N(100,40)
 - 20,000 flexibility designs with between 11-25 arcs
 - 90/10 training/testing

Applied Optimization Lab, University of Toronto

Visualizing algorithm progress

new chain!

Closed chain

Long chain!

Comparison against existing approaches

- Existing approaches
 - Expander (Chou et al., 2011)
 - UW-PCI/W-PCI (Simchi-Levi and Wei, 2015)
 - MDEP (Feng et al., 2017)
 - DVBH (Yan et al., 2017)
- Three test settings (Simchi-Levi and Wei, 2015)

Comparison against existing approaches

- PS and PSRH are consistently competitive with best approaches
- Some existing approaches perform well in certain test settings but poorly in others
- Similar results for worst case, 10th percentile, etc.

Comparison against existing approaches

		Test Setting 1			Test Setting 2			Test Setting 3		
	Network	Avg.	10^{th} pct.	Worst ratio	Avg.	10^{th} pct.	Worst ratio	Avg.	10^{th} pct.	Worst ratio
Baselines	Initial	8.03	6.87	0.66	12.13	10.68	0.71	13.19	11.83	0.75
	Avg Training	8.67	7.44	0.69	12.84	11.31	0.78	13.90	12.38	0.79
	Best Training	9.07	7.87	0.80	13.18	11.65	0.87	14.27	12.74	0.88
	Full Flexibility	9.39	8.06		13.30	11.72		14.35	12.83	
Existing Heuristics	Expander	8.61	7.40	0.73	13.08	11.48	0.82	14.31	12.82	0.86
	W-PCI	9.04	7.82	0.74	13.24	11.70	0.83	14.28	12.82	0.85
	UW-PCI	8.99	7.68	0.73	13.22	11.67	0.83	14.27	12.77	0.88
	MDEP	9.23	7.96	0.83	12.91	11.35	0.77	14.14	12.55	0.82
	DVBH	8.72	7.53	0.73	13.09	11.56	0.88	14.17	12.67	0.90
ML-based	PS	9.02	7.72	0.77	13.23	11.69	0.82	14.24	12.82	0.87
Heuristics	PSRH	9.23	7.95	0.79	13.22	11.68	0.79	14.32	12.82	0.89

Table 3 Flexibility Design Heuristics Performance Comparison

Back to the linac flexibility problem

- Can we design a sparse network with comparable performance to the existing network?
- What is the value of homogeneous linacs?

Network parameters

- 15 linacs, 3 models
- 36 patient groups
- 136 arcs
- Capacity: 8AM 630PM
 - Downtime data 2015-2017

- MLC malfunction, software frozen, etc.
- Each linac has ~9% chance of downtime on a given day
- Demand:
 - Curative treatment data from 2015-2016
 - Palliative demand assumed to be ~31% of total tx time

Specializing the method to radiation therapy

- Two constraints added to standard network flow model
 - Reshuffling: upper bound on total demand that can be moved to another linac following a breakdown
 - Linac heterogeneity: patients need to be treated on same type of linac if moved
- Same neural network-based heuristics
 - 95% of NN prediction errors within 5%

Designing a sparse treatment network

96.94(0.15)

96.94(0.10)

Homogeneous linacs

PSRH

Existing PM

Fully Flexible

80

136

540

 Homogeneous linacs can reduce average overtime by 27% and variability in overtime by order of magnitude

Table 5 Comparison of Network Designs with Heterogenous LNACs.							
Network	Arcs	Expected Max Flow 10^{th} Percentile	Worst Ratio (%)				
PSRH	46	9058.36 (9.68) 8662.52 (45.32)	96.66(0.07)				
PSRH	56	<u>9100.22 (17.85)</u> 8706.25 (73.63)	98.17(0.81)				
PSRH	80	9103.69 (16.51) 8734.09 (81.14)	98.08(0.98)				
Existing PM	136	9105.96 (17.64) 8748.79 (84.53)	98.91 (1.36)				
Fully Flexible	540	9110.47 (17.74) 8755.09 (82.69)					

	Table 7 Co	omparison of Network Desi	gns with Homogenou	us LNACs
Network	Arcs	Expected Max Flow	10^{th} Percentile	Worst Ratio (%)
PSRH	46	9055.28(0.06)	$8593.12\ (0.00)$	96.65(0.09)
\mathbf{PSRH}	56	9120.72(4.25)	8711.51 (36.92)	97.02(0.12)

9130.61(2.10)

9139.09 (0.31)

9131.37 (1.76) 8790.01 (8.92)

8786.54 (10.32)

8820.00(0.00)

Other insights

- Initial schedule matters a lot, due to presence of reshuffling constraint
 - Can get up to 40% of value of homogeneous linacs just by adjusting initial schedule
 - Suggests that two-stage approach is important

Summary

- Process flexibility is a useful lens through which to view many different problems
- Developed novel machine learning-based heuristic to design sparse treatment network
 - Likely to be most useful for large problems where decisions need to be made often, perhaps in real time

Thanks for listening!

Questions?

Timothy Chan

University of Toronto tcychan@mie.utoronto.ca

