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Process flexibility

• Well-known and well-studied, especially within the 
manufacturing context

• Broadly applicable concept

– Radiation therapy treatment network design
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Radiation therapy
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Treatment flexibility problem
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• Linacs are flexible machines and large cancer centers 
have many of them

– The good: Ability to deal with supply/demand uncertainty

– The bad: Device and training costs to being overly flexible

• Operational goal: Minimize overtime while satisfying 
daily demand 

• Complicating factor: machine downtime

• Contribution: a machine learning-based method to 
design sparse (treatment) networks
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The linac network at Princess Margaret
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15 linacs
36 patient 
groups

136 arcs
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Existing research in process flexibility

• Symmetric/balanced: focus is typically on theory

– E.g., optimality of the long chain, Simchi-Levi and Wei 2012

• General: focus on heuristics to design sparse 
networks, guided by deep theoretical insights

– Chou et al. 2011, Simchi-Levi and Wei 2015, Feng et al. 
2017, Yan et al. 2017
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Our idea: Part 1

• Replace the deep mathematical analysis with simple 
machine learning idea

– Bello et al. 2016, Khalil et al. 2017, Larsen et al. 2018, etc.

• “Predict and search” algorithm (PS)

– Search size: Full optimization for top candidates

– Batch size: Number of arcs to add
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Our idea: Part 2

• Prediction enables quick search over huge 
neighborhood, including backtracking

• “Predict and search with revisionist history” (PSRH)

• This is particularly useful if an intermediate arc 
makes a small, closed chain
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Neural network model 

• Train using adjacency matrix and max flow value

• Example performance on 10x10 network:

– 5000 demand realizations from truncated N(100,40) 

– 20,000 flexibility designs with between 11-25 arcs

– 90/10 training/testing
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Visualizing algorithm progress
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Comparison against existing approaches

• Existing approaches

– Expander (Chou et al., 2011)

– UW-PCI/W-PCI (Simchi-Levi and Wei, 2015)

– MDEP (Feng et al., 2017)

– DVBH (Yan et al., 2017)

• Three test settings (Simchi-Levi and Wei, 2015)
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di ∼ N(1,0.5)

cj = 1

di ∼ N(µi,0.5)
µi = 1 or ∼ U(0.5,1.5)
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Comparison against existing approaches

• PS and PSRH are consistently competitive with best 
approaches

• Some existing approaches perform well in certain 
test settings but poorly in others

• Similar results for worst case, 10th percentile, etc.
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Comparison against existing approaches
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Back to the linac flexibility problem

• Can we design a sparse 
network with comparable 
performance to the existing 
network?

• What is the value of 
homogeneous linacs?
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Network parameters

• 15 linacs, 3 models

• 36 patient groups

• 136 arcs

• Capacity: 8AM – 630PM

– Downtime data 2015-2017

– 70% of days at least one machine experienced downtime
• MLC malfunction, software frozen, etc.

– Each linac has ~9% chance of downtime on a given day

• Demand: 

– Curative treatment data from 2015-2016

– Palliative demand assumed to be ~31% of total tx time
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Specializing the method to radiation therapy

• Two constraints added to 
standard network flow model

– Reshuffling: upper bound on 
total demand that can be 
moved to another linac
following a breakdown

– Linac heterogeneity: patients 
need to be treated on same 
type of linac if moved

• Same neural network-based 
heuristics

– 95% of NN prediction errors 
within 5% 16
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Designing a sparse treatment network
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Homogeneous linacs

• Homogeneous linacs can reduce average overtime by 
27% and variability in overtime by order of 
magnitude
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Other insights

• Initial schedule matters a lot, due to presence of 
reshuffling constraint

– Can get up to 40% of value of homogeneous linacs just by 
adjusting initial schedule

– Suggests that two-stage approach is important
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Summary

• Process flexibility is a useful lens through which to 
view many different problems

• Developed novel machine learning-based heuristic to 
design sparse treatment network

– Likely to be most useful for large problems where 
decisions need to be made often, perhaps in real time
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Thanks for listening!

Questions?

Timothy Chan
University of Toronto

tcychan@mie.utoronto.ca
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