Exploring Regional Variation and Survival in Colon Cancer Pathway Concordance

Research Roundtable: Data Analytics in Healthcare

Rotman School of Management

March 9, 2020

Luciano Ieraci, Maria Eberg

Data and Decision Sciences, Ontario Health (CCO)

D+DS Provides Advanced Analytics Competency for Health System Management

Background to Disease Pathway Measurement

What Are Pathway Maps?

Flowcharts that describe the care cancer patients should receive based on **best available evidence**

Quality improvement tool for the Ontario cancer system

Population based, organized by cancer type (e.g. lung cancer) and span the entire care continuum

Sequences of interventions with care teams, specialties, programs – *does <u>not</u> include specific protocols, regimens, costs, etc.*

Example – Colorectal Cancer Pathway Map

Why Do We Develop Pathway Maps?

GOAL

- Facilitate improvements in quality, access, appropriateness, and coordination of care across the cancer continuum.
- Set care expectations for cancer patients in Ontario, based on best scientific evidence
- Reduce undesired variation in care
- Promote discussion and collaboration between care providers, health administrators, system planners, and educators

Introduction to Pathway Concordance Measurement

Pathway Concordance Objectives

Quantifies agreement between actual care received and care recommended by the pathway map

Pathway Concordance Objectives

1. Develop methodology to measuring pathway concordance using CCO's current data holding at a population and system level. Focus at the system level or specific section of the pathway. These methods do not exist currently.

2. Create capability to link to outcomes of interest to monitor system performance

- Clinical outcomes survival, recurrence, patient-reported outcomes
- Health system costs

 ∇

3. Establish metric for ongoing evaluation and performance measurement, system monitoring

- Identify deviations from pathway map and effects on outcomes
- Support quality initiatives and performance management

Approach and Methods

Population and Data Sources

Cohort

- Ontario Cancer Registry
 - Accrual from Jan 1, 2012 to Dec 31, 2016
 - Follow-up until death or Mar 31, 2019
- Incident stage II and III colon cancer
 - Pathologically-confirmed
- Exclusions:
 - Non-Ontario resident / invalid health card
 - Had more than one primary tumour
 - Evidence of non-curative treatment before surgery

Health services

- Radiation, chemotherapy (Activity Level Reporting, Ontario Drug Benefit population)
- Physician services (Ontario Claims History Database)
- Hospital services (National Ambulatory Care Reporting System, Discharge Abstract Database)

Pathway – Colon Cancer

Resectable, curative pathway only

Metric Development

Simplified Reference Pathways

• Stages IIA, IIB/C correspond to average and higher risk of cancer recurrence, respectively

Colon Cancer Stage II	Colon Cancer Stage III
Stage IIA (A or B) – C – D – (E optional)	(A or B) – C – D – E – F
Stage IIB / IIC (A or B) – C – D – E – (F optional)	

- A or B Endoscopy full or partial
- C Imaging: abdominal CT, pelvis CT, chest imaging
- D Surgical resection
- **E** Oncology consultation
- F Chemotherapy

Levenshtein Distance Metric

Calculate Levenshtein distance metric for each subject

ReferenceA - B - C - DsubtractionsA - B - C - DadditionA - B - C - DObservedA - B - D - E - F-E - FA - B - D+CA - B - C - D

Therefore Levenshtein distance = # Operations = 3

- Levenshtein counts the number of "edits" required to transform observed pathway: counts the number of additional (edit = "insert") and missing (edit = "delete") events along pathway
- Normalized Levenshtein used to represent "percent similarity" (higher scores are concordant)

$$d' = 1 - \frac{d(x, y)}{max(x, y)}$$

- where d(x, y) is the Levenshtein distance and max(x, y) is the maximum path length

Pathway Concordance and Survival

Objective and Methods

Objective

 Validate the developed concordance score by investigating its association with patient survival at the population level

Crude analyses

- Kaplan-Meier survival curves by *tercile groups*
- Common edit operations / sources of discordance *lowest tercile group*

Adjusted analyses

- Extension of Cox proportional hazards model for time-dependent variables
- Time-dependent covariates:

Concordance score, unplanned ED visits, chemotherapy treatments

• Baseline covariates:

Socio-demographic variables, history of health services utilization, comorbidity history, variables related to cancer and its treatment

Additional / Missing Events

Event type	Stage II – low concordance tercile (n = 1,646)	Stage III – Iow concordance tercile (n = 1,782)
Additional activity		
Additional imaging test, n (%)	(1,642 (99.8%)	1,779 (99.8%)
Abdomen CT, median (IQR)	2(1-3)	3 (2 – 4)
Chest CT, median (IQR)	1 (1 – 2)	2 (1 – 3)
Chest X-ray, median (IQR)	4 (2 - 7)	4 (2 - 7)
Additional consultation, n(%)	(1,531 (93.0%)	1,624 (91.1%)
Medical oncologist, median (IQR)	2 (1 – 3)	2 (1 – 3)
Surgical oncologist, median (IQR)	2 (1 – 2)	2 (1 – 2)
Additional endoscopy, n (%)	704 (42.8%)	782 (43.9%)
Additional radiation treatment, n (%)	0 (0%)	385 (21.6%)
Missing activity		
Missing endoscopy, n (%)	416 (25.3%)	507 (28.5%)
Missing imaging test, n (%)	186 (11.3%)	232 (13.0%)
Missing chemotherapy, n (%)	N/A	684 (38.4%)

Survival by Concordance Tercile

• Stage II – Kaplan-Meier survival curves

Stage III – Kaplan-Meier survival curves

Stage II – Survival Analysis Results

	1		A HR	= 0.64						
	Concordance (%)		77	-						
	Age, 56-64					_				Higher rate of death:
	Age, 65-74		_			_				- Older age
	Age, 75+					_				- Charlson score
										Chanson score
	Urban residency									 Higher stage
	Income, Medium to Low vs Low									- High tumor grade
			-							
	Income, Medium to High vs Low									- ED VISITS
	Income, High vs Low		-							
	Immigration, Middle vs Low									Lower rote of deaths
0	Immigration, High vs Low		-						Discretion	Lower rate of death:
risti	Charlson score								Direction	- Female
acte	Number of outpatient visits, 1-4									- Highest immigrant
Char	Number of outpatient visits, 5+								Harmiu Protective	
Ŭ	Screening, Diagnostic vs None		-	× .						population
	Screening, Repeated vs None			×						 Pathway concordance
	Screening, Sporadic vs None			~						
	Grade, High vs Low				-					
	Grade, Unknown vs Low			~ \'						
	Stage, B vs A			× —	•					
	Stage, C vs A				_					
	LOS, 6+ vs <=5			<u>\</u>						
	Number of ER visits, 1-2			×	-					
	Number of ER visits, 3+			\ !	—					
	Number of chemotherapy visits, 1-4			N						
	Number of chemotherapy visits, 5-8			Ń						
	Number of chemotherapy visits, 8+									1
		0.25	0.50	1.00 Hazard Ratio	2.00 (95% Confide	4.00 ence Interval)	8.00	16.00		

Stage III – Survival Analysis Results

		0.25	0.50	1.00 Hazard Ratio (95%	2.00 Confidence Interval	4.00		
	Number of chemotherapy visits, 8+						_	19
	Number of chemotherapy visits, 5-8			·\				
	Number of chemotherapy visits, 1-4			N.				
	Number of ER visits, 3+			\mathbf{h}				
	Number of ER visits. 1-2			\ <u>'</u>				
	LOS, 6+ vs <=5			\mathbf{h}				
	Stage, C vs A			\searrow		• • •••		
	Stage, B vs A			1	-	_		 Pathway concordance
	Grade, Unknown vs Low			<u> </u>				
	Grade. High vs Low			<u>\</u>				- Chemotherapy treatments
	Screening, Sporadic vs None			<u> </u>				- Unknown tumor grade
	Screening, Diagnostic VS None		,				·	population
Char	Number of outpatient visits, 5+			~			Protective	- Highest immigrant
actel	Number of outpatient visits, 1-4			-1		The Null	- remaie	
ristic	Charlson score						Direction	- Fomalo
	Immigration, High vs Low						_	Lower rate of death:
	Immigration, Middle vs Low							
	Income, High vs Low			~				
	Income, Medium to High vs Low							ED vioito
	Income, Middle vs Low							- High tumor grade
	Income, Medium to Low vs Low							- Higher stage
	Urban residency							- Charison score
	Female							
	Age. 75+		-					- Older age
	Age. 65-74		-					Higher rate of death:
		_	$-\overrightarrow{X}$		•			
	Concerdance (%)		H	IR = 0.77				

Clustering and Segmentation Analysis

Deriving Actionable Insights

How can we use concordance measurement to inform quality improvement?

Objectives

- Find subpopulations of patients with "modifiable" factors to inform future quality improvement efforts
- Use unsupervised learning algorithms such as clustering to identify heterogeneous groups within the population of colon cancer patients
- Assess the additional benefit of incorporating a concordance metric in the analysis

K-Means Clustering

Methods

- Partition data into distinct groups so that the observations within each group are similar, while observations in other groups are different
- Similarity is measured by squared Euclidian distance:

$$\frac{1}{|C_K|} \sum_{i,i' \in C_K} \sum_{j=1}^p (x_{ij} - x_{i'j})^2$$

Clustering Analysis – What Did We Find?

Variables used for analysis

- Time from diagnosis date to surgical resection
- Length of hospital stay
- Levenshtein concordance metric (un-normalized)

Found clusters to target

- High mortality with variation in time-to-events
- Identified subgroups with high prevalence of radiation treatment (cancer in rectosigmoid junction)
- Identified lack of "early identification" activity (screening, endoscopy)

Adding the Levenshtein metric resulted in refined data segmentation

Clusters Profiles

Cancer Screening by Cluster Groups

High-mortality groups more likely to have no screening.

Regional Analysis

Stage III – Regional Variation in Cluster Volumes

Stage III – Regional Variation in Concordance

Region	% Above provincial median
G	61.0%
J	41.0%

Conclusion

Conclusion

- Demonstrated feasibility of measuring pathway concordance across the cancer continuum at a population based level
- Novel application of measurement shows promising results in demonstrating:
 - Regional and practice variation
 - Association with improved survival
- Approach could be used to identify opportunities for quality improvement and measuring system performance

Next Steps

Evaluation of metrics

- To determine the optimal metric Ontario Health (CCO) perspective
- Currently drafting multiple criteria to rank metrics with expert group(s)
- Goal is to endorse one metric, or multiple metrics based on strengths/weaknesses

Extension to breast cancer pathways

- Developing metrics for breast cancer pathway concordance analysis
- Continuing to work with the University of Toronto (MIE) to define reference pathways and assess metric performance

Acknowledgements

Data & Decision Sciences

Luciano Ieraci Maria Eberg Emmett Borg Saba Vahid Paula Murray Ali Vahit Esensoy

Disease Pathway Management

Katharina Forster Sarah Bastedo Marta Yurcan Jocelyn Pang Dana Chmelnitsky Jill Ross

Funding Unit Shannon Milroy Jason Sutherland Judith Wong Katharine Sun May Seto Nancy Shukla

QME & Cancer Analytics Steven Habbous Tharsiya Martin Kyle Tsang Shirley Li Kelly Woltman Louis Fu Sue Su-Myat Research Office Funding support

Clinical Leads Dr. Claire Holloway Dr. Erin Kennedy

Questions / Discussion

