Introduction	Problem definition	Formulation	Extensions	Decomposition	Results	Conclusion
00	0000	000	00000	000	00	00

Continuity of care for a home health care provider: how much is too much?

Vahid Roshanaei, Oded Berman, Opher Baron

Rotman School of Management, University of Toronto, Ontario, Canada {vahid.roshanaei, berman, opher.baron}@rotman.utoronto.ca

Research Roundtable at Rotman School of Management: Data Analytics in Healthcare

March 4, 2019

Introduction	Problem definition	Formulation	Extensions	Decomposition	Results	Conclusion
•0	0000	000	00000	000	00	00

Home health care services

Introduction $\bullet 0$	Problem definition	Formulation 000	Extensions 00000	Decomposition 000	Results 00	Conclusion 00
Home h	ealth care s	ervices				

- Home Health Care (HHC) is an alternative to traditional hospitals.
- HHC is currently regarded as an essential service in patient-centric health systems.

• HHC is delivered via authorized HHC providers through licensed health practitioners, such as registered nurses, physical therapists, and/or personal support workers.

HHC agency responsibilities

Introduction Problem definition Formulation Extensions Results 00 Significance: Aging population in G7

Proportion of the population aged 65 and older in the G7 countries

65 and older

- HHC is one of the world's most rapidly growing industries.
- In 2014, HHC was the fastest-growing U.S. industry with a projected growth of almost 5% per year through 2024.
- The National Association for Home Care and Hospice reports
 - 12 million patients received services from 33,000 agencies in North America in 2010.
 - $\bullet~78.7\%$ of these agencies are for-profit organizations.

Introduction	Problem definition	Formulation	Extensions	Decomposition	Results	Conclusion
0.	0000	000	00000	000	00	00
ac	C	1				

Significance: Canada

Figure 7: Proportion of the Population, 65 Years and Over, 2017-2031

Sources: Statistics Canada, 2014a and 2016a; calculation by authors.

Figure 8: Health Care Expenditure per Capita by Age Group, Canada, 2014

Source: CIHI, 2016.

Introduction $0 \bullet$	Problem definition	Formulation 000	Extensions 00000	Decomposition 000	Results 00	Conclusion 00
Significa	ance: Ontar	rio				

- Over 150,000 patients in Ontario rely on HHC services.
 34,500 patients patients in Toronto receive HHC services.
- Over 2.5 Billion was spent in Ontario for HHC services (5% of Ontario's total health budget).
- 92% of HHC patients in Ontario are satisfied with the services they have received.
- Provisioning care to terminally ill patients in an acute-care hospital is 10 times more expensive than at-home care.

Province-wide healthcare overhaul measure

- Government will shut down CCACs and integrate them into one of the 14 LHINs
 - ◊ Government needs to locate new HHC facilities
 - ♦ Home aides will be government employees.
 - $\diamond~$ Hiring/firing of aides will the government responsibility.

Introduction	Problem definition	Formulation	Extensions	Decomposition	Results	Conclusion
00	●000	000	00000	000	00	00

Toronto map: 96 FSAs

^{4/22}

Locating HHC facilities in Toronto

- 96 potential HHC demand locations
- 96 potential HHC facility sites
- Amount of each demand type from each demand node
 - Proportion of residential population
 - ◊ Proportion of commercial population
- 5 nursing demand types from each demand node
 - ◊ Proportion of each demand type
- 20 different time periods: Each equal to three months

Introduction 00	Problem definition	Formulation	Extensions 00000	Decomposition 000	Results 00	Conclusion 00
Practica	al considera	tions				

- Continuity of care
 - ◊ Full: permanent demand node to facility allocation
 - ◊ Partial: period-based demand node to facility allocation
- Nurse flexibility
- Nurse pooling
- Uncertainty in demand

Figure: Potential facilities

Introduction 00	Problem definition	Formulation 000	Extensions 00000	Decomposition 000	$\operatorname{Results}$	Conclusion 00
Decisio	n variables					

 $\diamond~$ where to establish home care facilities

Introduction 00	Problem definition $000 \bullet$	Formulation 000	Extensions 00000	Decomposition 000	$\operatorname{Results}$	Conclusion 00
Decisio	n variables					

 $\diamond~$ where to establish home care facilities

• Allocation decisions

 $\diamond~$ which region/demand type to serve by each open facility

Introduction 00	Problem definition	Formulation 000	Extensions 00000	Decomposition 000	$\operatorname{Results}$	Conclusion 00
Decisio	n variables					

 $\diamond~$ where to establish home care facilities

• Allocation decisions

 $\diamond~$ which region/demand type to serve by each open facility

• Capacity allocation decisions

 $\diamond~$ how many nurses of each type to allocate to open facilities

Introduction 00	Problem definition	Formulation 000	Extensions 00000	Decomposition 000	$\operatorname{Results}$	Conclusion 00
Decisio	n variables					

 $\diamond~$ where to establish home care facilities

• Allocation decisions

 $\diamond~$ which region/demand type to serve by each open facility

• Capacity allocation decisions

 $\diamond~$ how many nurses of each type to allocate to open facilities

• Provisional capacity allocation decisions

 $\diamond~$ what should be the size of each open facility

Introduction Problem definition Formulation Extensions Decomposition Results Oco Conclusion Oco Deterministic mixed-integer programming model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

8/22

Introduction 00	Problem definition	Formulation $0 \bullet 0$	Extensions 00000	Decomposition 000	Results 00	Conclusion 00
Objecti	ve function					

• Maximize service revenue: η_k

Introduction 00	Problem definition	Formulation $0 \bullet 0$	Extensions 00000	Decomposition 000	$\operatorname{Results}$	Conclusion 00
Objecti	ve function					

• Maximize service revenue: η_k

- Minimize service provisioning costs:
 - service cost: transit time+transportation cost+service time
 - fixed cost of opening facilities
 - variable cost of acquiring provisional capacity
 - hiring/firing costs of nurses

• Unique Assignment. Allocate each demand type from each demand node to at most one of the open facilities

Introduction 00	Problem definition	Formulation $00 \bullet$	Extensions 00000	Decomposition 000	Results 00	Conclusion 00
Constra	ints					

- Unique Assignment. Allocate each demand type from each demand node to at most one of the open facilities
- **Period-based capacities.** Allocate required capacity to each demand type in each open facility in each period

Introduction 00	Problem definition	Formulation 000	Extensions 00000	Decomposition 000	Results 00	Conclusion 00
Constra	ints					

- Unique Assignment. Allocate each demand type from each demand node to at most one of the open facilities
- **Period-based capacities.** Allocate required capacity to each demand type in each open facility in each period
- **Provisional capacities.** Determine provisional nursing capacity for each open facility

Introduction 00	Problem definition	Formulation 000	Extensions 00000	Decomposition 000	Results 00	Conclusion 00
Constra	ints					

- Unique Assignment. Allocate each demand type from each demand node to at most one of the open facilities
- **Period-based capacities.** Allocate required capacity to each demand type in each open facility in each period
- **Provisional capacities.** Determine provisional nursing capacity for each open facility
- Maximum facility size. Set maximum possible provisional capacity

Introduction 00	Problem definition	Formulation 000	Extensions 00000	Decomposition 000	Results 00	Conclusion 00
Constra	ints					

- Unique Assignment. Allocate each demand type from each demand node to at most one of the open facilities
- **Period-based capacities.** Allocate required capacity to each demand type in each open facility in each period
- **Provisional capacities.** Determine provisional nursing capacity for each open facility
- Maximum facility size. Set maximum possible provisional capacity
- Hiring/firing. Compute hiring/firing of each nursing type

Introduction 00	Problem definition	Formulation 000	Extensions 00000	Decomposition 000	Results 00	Conclusion 00
Constra	ints					

- Unique Assignment. Allocate each demand type from each demand node to at most one of the open facilities
- **Period-based capacities.** Allocate required capacity to each demand type in each open facility in each period
- **Provisional capacities.** Determine provisional nursing capacity for each open facility
- Maximum facility size. Set maximum possible provisional capacity
- Hiring/firing. Compute hiring/firing of each nursing type
- **Budget limit.** Ensure the total cost of provisional capacity+facility opening does not exceed the considered budget

7 5

Figure: Location-allocation: t = 2

Figure: Location-allocation: t = 2

12/22

Introduction	Problem definition	Formulation	Extensions	Decomposition	Results	Conclusion
00		000	00●00	000	00	00
Nurse fl	exibility					

Each nurse performs exclusively the task that s/he specializes in.

Introduction 00	Problem definition	Formulation 000	Extensions 00000	Decomposition 000	$\begin{array}{c} \text{Results} \\ \text{oo} \end{array}$	Conclusion 00
Nurse fl	exibility					

Higher-skilled nurses can perform the tasks of lower-skilled nurses.

Introduction	Problem definition	Formulation	Extensions	Decomposition	Results	Conclusion
00		000	00000	000	00	00
Nurse p	ooling					

• We only consider the network hiring/firing cost.

• We only penalize the surplus or shortage of the network with respect to the previous period.

• We consider stochasticity in demand using scenarios:

•
$$\bar{D}_{jtk} \longrightarrow D_{jtk}^{(s)}$$

- **ARDO**¹ is a soft-constrained approach to robust optimization that
 - models robust optimization problems with binary variables,
 - trades off infeasibility versus objective function value, and
 - incorporates exogenous risk tolerance.

¹Baron, O., Berman, O., Fazel-Zarandi, M. M., and Roshanaei, V., (2019). Almost Robust Discrete Optimization (ARDO), European Journal of Operational Research, In press.

- **ARDO**¹ is a soft-constrained approach to robust optimization that
 - models robust optimization problems with binary variables,
 - trades off infeasibility versus objective function value, and
 - incorporates exogenous risk tolerance.
- **ARMIO** generalizes the concept of ARDO to
 - solve robust mixed-integer optimization problems,
 - trades off suboptimality versus objective function value, and
 - incorporates endogenous risk tolerance.

¹Baron, O., Berman, O., Fazel-Zarandi, M. M., and Roshanaei, V., (2019). Almost Robust Discrete Optimization (ARDO), European Journal of Operational Research, In press.

Introduction	Problem definition	Formulation	Extensions	Decomposition	Results	Conclusion
Size of t	he ARMIO	model				

• Static variant: $\mathcal{O}(|\mathcal{I}| \times |\mathcal{J}| \times |\mathcal{K}|) \approx 50,000$ variables

• Dynamic variant: $\mathcal{O}(|\mathcal{I}| \times |\mathcal{J}| \times |\mathcal{T}| \times |\mathcal{K}|) \approx 1,000,000$ variables

• Features 1 to 4 are static variants and 5 to 8 are dynamic variants.

• Largest contribution to profit (2.6%) due to dynamic allocation (feature 5)

• Capacity of maximum 10 nurses of each demand type

• Largest contribution to profit (2.5 times) due to nurse flexibility (feature 2)

• Capacity of maximum **20 nurses** of each demand type

• Largest contribution to profit due to nurse flexibility (feature 2)

• Capacity of maximum **50 nurses** of each demand type

• Diminishing the impact of practical features

Introduction 00	Problem definition	Formulation 000	Extensions 00000	Decomposition 000	Results 00	$ \begin{array}{c} \text{Conclusion} \\ \bullet 0 \end{array} $
Conclus	ion					

- We developed new models and methods for locating HHC facilities in Toronto
 - Continuity of care, nurse flexibility, nurse pooling, stochasticity in demand

Introduction 00	Problem definition	Formulation 000	Extensions 00000	Decomposition 000	$\begin{array}{c} \text{Results} \\ \text{oo} \end{array}$	Conclusion ●0
Conclus	ion					

- We developed new models and methods for locating HHC facilities in Toronto
 - Continuity of care, nurse flexibility, nurse pooling, stochasticity in demand
- Nurse flexibility is most useful under capacity restriction. It can increase profit by 2.5 times (250%).

Introduction 00	Problem definition	Formulation 000	Extensions 00000	Decomposition 000	$\begin{array}{c} \text{Results} \\ \text{oo} \end{array}$	Conclusion ●0
Conclusion						

- We developed new models and methods for locating HHC facilities in Toronto
 - Continuity of care, nurse flexibility, nurse pooling, stochasticity in demand
- Nurse flexibility is most useful under capacity restriction. It can increase profit by 2.5 times (250%).
- Dynamic allocation of demand nodes to facilities has the largest contribution on profit (2.6%) when facilities can acquire unlimited capacities.

Introduction 00	Problem definition 0000	Formulation 000	Extensions 00000	Decomposition 000	$\begin{array}{c} \text{Results} \\ \text{oo} \end{array}$	$ \begin{array}{c} \text{Conclusion} \\ \bullet \text{O} \end{array} $	
Conclusion							

- We developed new models and methods for locating HHC facilities in Toronto
 - Continuity of care, nurse flexibility, nurse pooling, stochasticity in demand
- Nurse flexibility is most useful under capacity restriction. It can increase profit by 2.5 times (250%).
- Dynamic allocation of demand nodes to facilities has the largest contribution on profit (2.6%) when facilities can acquire unlimited capacities.
- Static allocation plus nurse flexibility is a reasonable trade-off among tractability, profitability, and continuity of care in the presence of unlimited capacity.

Introduction	Problem definition	Formulation	Extensions	Decomposition	Results	Conclusion
00	0000	000	00000	000	00	0•

Thanks for your attention.

• Nursing capacity allocation in the absence of flexibility

$$\sum_{j \in \mathcal{J}} \left(R_{ij} + S_k \right) \bar{D}_{jtk} x_{ijk} \le z_{itk} \qquad \forall i \in \mathcal{I}, t \in \mathcal{T}, k \in \mathcal{K}$$

• Nursing capacity allocation in the presence of flexibility

$$\sum_{j \in \mathcal{J}} \sum_{k' \le k} \left(R_{ij} + S_{k'} \right) \bar{D}_{jtk'} x_{ijk'} \le \sum_{k' \le k} z_{itk'} \quad \forall i \in \mathcal{I}, k \in \mathcal{K},$$

- Extensions can be developed for
 - $x_{ijk} \ge 0$ and $x_{ijk} \in \{0, 1\}$
 - $x_{ijtk} \ge 0$ and $x_{ijtk} \in \{0, 1\}$

Inter-facility nurse pooling

• No inter-facility nurse pooling:

$$\begin{aligned} w_{itk}^+ &\geq z_{itk} - z_{i,t-1,k} & \forall i \in \mathcal{I}, t \in \mathcal{T} \setminus \{1\}, k \in \mathcal{K} \\ w_{itk}^- &\geq z_{i,t-1,k} - z_{itk} & \forall i \in \mathcal{I}, t \in \mathcal{T} \setminus \{1\}, k \in \mathcal{K}. \end{aligned}$$

• Inter-facility nurse pooling: Fired nurses of type k from each facility can work in other facilities with deficit in the same nursing category.

$$w_{tk}^{+} \geq \sum_{i \in \mathcal{I}} z_{itk} - \sum_{i \in \mathcal{I}} z_{i,t-1,k} \qquad \forall t \in \mathcal{T} \smallsetminus \{1\}, k \in \mathcal{K},$$
$$w_{tk}^{-} \geq \sum_{i \in \mathcal{I}} z_{i,t-1,k} - \sum_{i \in \mathcal{I}} z_{i,t,k} \qquad \forall t \in \mathcal{T} \smallsetminus \{1\}, k \in \mathcal{K}.$$

Uncertainty in demand

$$\sum_{j \in \mathcal{J}} \left(\left(R_{ij} + S_k \right) D_{jtk}^{(s)} \right) x_{ijk} \le z_{itk} \quad \forall i \in \mathcal{I}, t \in \mathcal{T}, k \in \mathcal{K}, s \in \mathcal{S},$$

B&C master problem with deterministic demand

 $\underset{x,y,z,z_{0},w^{+},w^{-}}{\text{maximize}}\,\tau$

s.t.
$$\tau \leq \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{t \in \mathcal{T}} \sum_{k \in \mathcal{K}} \left(\eta_k - \left(R_{ij} + S_k \right) \theta_k - R_{ij} \Omega \right) \overline{D}_{jtk} x_{ijk} - \left(\sum_{i \in \mathcal{I}} K_i y_i + \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} C_k^{\text{Provisional}} z_{i0k} + \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} C_k^{\text{First}} z_{i1k} + \sum_{i \in \mathcal{I}} \sum_{t \in \mathcal{T} \setminus \{1\}} \sum_{k \in \mathcal{K}} \left(C_k^+ w_{itk}^+ + C_k^- w_{itk}^- \right) \right)$$

$$\sum_{i \in \mathcal{I}} x_{ijk} \leq 1 \qquad \forall j \in \mathcal{J}, k \in \mathcal{K}$$

$$\sum_{j \in \mathcal{J}} \left(R_{ij} + S_k \right) \overline{D}_{jtk} x_{ijk} - z_{itk} \leq \ell_k \qquad \forall i \in \mathcal{I}, t \in \mathcal{T}, k \in \mathcal{K}$$

$$z_{i0k} \leq L_k y_i \qquad \forall i \in \mathcal{I}, k \in \mathcal{K}$$

$$z_{itk} \leq z_{i0k} \qquad \forall i \in \mathcal{I}, t \in \mathcal{T}, k \in \mathcal{K}$$

$$w_{itk}^+ \geq z_{itk} - z_{i,t-1,k} \qquad \forall i \in \mathcal{I}, t \in \mathcal{T} \setminus \{1\}, k \in \mathcal{K}$$

$$w_{itk} \geq z_{i,t-1,k} - z_{itk} \qquad \forall i \in \mathcal{I}, t \in \mathcal{T} \setminus \{1\}, k \in \mathcal{K}$$

Master problem output for subproblems at incumbent \boldsymbol{h}

- $\hat{\mathcal{I}}^{(h)}$: set of open facilities
- $\hat{\mathcal{J}}_i^{(h)}$: set of demand nodes allocated to open facility i
- $\hat{\mathcal{K}}_i^{(h)}$: set of nursing types served by open facility *i*
- $\hat{Z}_{itk}^{(h)}$: capacity of nursing type k at period t in open facility i
- $\hat{Z}_{i0k}^{(h)}$: provisional capacity of nursing type k for open facility i

Subproblem: Penalty function for each scenario

The penalty function for each scenario of hth MP solution:

$$Q_{ikt}^{(s)} = \left(\sum_{j \in \hat{\mathcal{J}}_i^{(h)}} \left(\left(R_{ij} + S_k \right) D_{jtk}^{(s)} \right) - \hat{Z}_{itk}^{(h)} \right)^+ \forall i \in \hat{\mathcal{I}}^{(h)}, t \in \mathcal{T}, k \in \hat{\mathcal{K}}_i^{(h)}, s \in \mathcal{S}$$

 $\hat{Z}_{itk}^{(h)}$: capacity of nursing type k in facility i at period t obtained via deterministic demand: \bar{D}_{itk}

Expected penalty over all scenarios

$$\bar{Q}_{ikt} = \sum_{s \in \hat{\mathcal{S}}_{itk}^{(h)}} p_s Q_{ikt}^{(s)}.$$

Violations and Benders cuts

Upon observing any violation, develop a Benders cut that

- Increases capacity z_{itk} ;
- ${\it 2}$ Removes at least one demand node from $\hat{\mathcal{J}}_i^{(h)};$ and/or
- **③** Implements both strategies.

Violations and Benders cuts

Upon observing any violation, develop a Benders cut that

- 1 Increases capacity z_{itk} ;
- ${\it 2}$ Removes at least one demand node from $\hat{\mathcal{J}}_i^{(h)};$ and/or
- **Implements both strategies.**

$$\tilde{Z}_{itk}^{(h)}\left(1 - \left(\sum_{j \in \hat{\mathcal{J}}_i^{(h)}} \left(1 - x_{ijk}\right)\right)\right) - z_{itk} \le \ell_{itk} \ \forall i \in \hat{\mathcal{I}}^{(h)}, t \in \mathcal{T}, k \in \hat{\mathcal{K}}_i^{(h)},$$

where $\tilde{Z}_{itk}^{(h)} = \hat{Z}_{itk}^{(h)} + \bar{Q}_{ikt}^{(h)}$.

Violations and Benders cuts

Upon observing any violation, develop a Benders cut that

- 1 Increases capacity z_{itk} ;
- **2** Removes at least one demand node from $\hat{\mathcal{J}}_i^{(h)}$; and/or
- **Implements both strategies.**

$$\tilde{Z}_{itk}^{(h)}\left(1 - \left(\sum_{j \in \hat{\mathcal{J}}_i^{(h)}} \left(1 - x_{ijk}\right)\right)\right) - z_{itk} \le \ell_{itk} \ \forall i \in \hat{\mathcal{I}}^{(h)}, t \in \mathcal{T}, k \in \hat{\mathcal{K}}_i^{(h)},$$

where $\tilde{Z}_{itk}^{(h)} = \hat{Z}_{itk}^{(h)} + \bar{Q}_{ikt}^{(h)}$.

Theorem

The above inequality is a valid Benders cut and does not remove any globally integer feasible solution.

315

ヘロン 人間 とうせい くほとう

Subproblem with nurse flexibility

$$\begin{split} \bar{Q}_{it}^{(h)} &\coloneqq \min \quad \sum_{k \in \mathcal{K}} \sum_{s \in \mathcal{S}} p_s Q_{itk}^{(s)} & \text{(LP model)} \\ \text{subject to} \quad \sum_{k' \geq k} e_{itkk's} \leq \hat{Z}_{itk} & \forall k \in \mathcal{K}, s \in \mathcal{S}, \\ Q_{itk}^{(s)} \geq \sum_{j \in \hat{\mathcal{J}}_i} \left(R_{ij} + S_k \right) D_{jtk}^{(s)} - \ell_k - \sum_{k' \leq k} e_{itk'ks} & \forall k \in \mathcal{K}, s \in \mathcal{S}, \\ e_{itkk's} \geq 0 & (k, k') \in \mathcal{K} \mid k' \geq k, s \in \mathcal{S}, \\ Q_{itk}^{(s)} \geq 0 & k \in \mathcal{K}, s \in \mathcal{S}, \end{split}$$

Toronto data

- 96 demand nodes (centroid of each region)
- 150,000 HHC patients served in Ontario
- 34,500 HHC patients service in Toronto (23% of Ontario population)
 - residential population of each demand node is known.
- Fraction of each nursing demand type: [5.2%, 0.7%, 31.5%, 56.9%, and 5.7%]
- Nursing cost: [40, 35, 30, 25, 20]
- Revenue per visit: [60, 50, 40, 35, 25]
- Transportation cost: 41 cents per km
- Service time: 50 minutes
- Budget: 50,0000,000
- Fixed cost of facilities \approx U[800,000,1,700,000]
- Scenarios: 100

Backup slides $0 \bullet 0$

Future work

• Robustness Index (RI)

 $\text{RI} = \frac{\text{improvement in objective function value}}{\text{increase in total penalty}} = \frac{c^T x_{\ell}^* - c^T x_0^*}{\bar{Q}(x_{\ell}^*)^T I_{1 \times J}}$

Decision variables

• Location decisions

$$y_i = \begin{cases} 1, & \text{if facility } i \text{ is established} \\ 0, & \text{otherwise} \end{cases}$$

Decision variables

• Location decisions

$$y_i = \begin{cases} 1, & \text{if facility } i \text{ is established} \\ 0, & \text{otherwise} \end{cases}$$

• Allocation decisions

$$x_{ijk} = \begin{cases} 1, & \text{if facility } i \text{ serves type } k \text{ nursing demand} \\ & \text{from demand node } j \\ 0, & \text{otherwise} \end{cases}$$

Decision variables

• Location decisions

$$y_i = \begin{cases} 1, & \text{if facility } i \text{ is established} \\ 0, & \text{otherwise} \end{cases}$$

• Allocation decisions

$$x_{ijk} = \begin{cases} 1, & \text{if facility } i \text{ serves type } k \text{ nursing demand} \\ & \text{from demand node } j \\ 0, & \text{otherwise} \end{cases}$$

• Continuous capacity allocation decisions $z_{itk} \ge 0$: capacity allocation to type k demand in open facility i at time period t

Decision variables

• Location decisions

$$y_i = \begin{cases} 1, & \text{if facility } i \text{ is established} \\ 0, & \text{otherwise} \end{cases}$$

• Allocation decisions

$$x_{ijk} = \begin{cases} 1, & \text{if facility } i \text{ serves type } k \text{ nursing demand} \\ & \text{from demand node } j \\ 0, & \text{otherwise} \end{cases}$$

- Continuous capacity allocation decisions $z_{itk} \ge 0$: capacity allocation to type k demand in open facility i at time period t
- Provisional capacity allocation decisions
 z_{i0k} ≥ 0: provisional capacity allocation to type k nursing demand in open facility i