
10 / Rotman Magazine Winter 2012

by Karen Christensen

The creator of the Linux operating system, which runs
everything from Google to the New York Stock Exchange,

describes the merits of open collaboration.

Thought Leader Interview:

Linus Torvalds

In 1991 you were a student at the University of Helsinki and
a self-taught hacker. What got you thinking about creating a
new operating system?
It wasn’t really a conscious decision; it was more a confluence
of factors. Part of it was simply that I was interested in operat-
ing systems and had been working on low-level issues for a
long time. I’d been doing assembly language programming and
messing around with device drivers with my previous machine –
a Sinclair QL that had very little support in Finland. So although
I was only 21, I had something of a background for it. Another
thing was that I wanted to run Unix on my newly-acquired PC,
so rather than running DOS and Windows, I had gotten Minix
for my machine, which was a small Unix-like operating system
built for educational purposes. But it was much more limited
than the Unix I had gotten used to at university. At the same
time, I was working on a ‘pet project’ to teach myself all about
the innards of my new machine. This is what ended up expand-
ing to become the first version of Linux.

Before long, you began to encourage input to your system’s
coding from other members of the IT community. Given how
hard you worked on it, how did feel about the ‘loss of control’
aspect of this?
To me, inviting other people to become part of the project
wasn’t about me losing control; it was about getting lots of new
ideas for further improvements. I would almost certainly have
become bored with Linux rather quickly if it hadn’t been for this
decision – that’s what had happened with the earlier projects I
worked on in private. In fact, the initial impetus for making the
Linux source code available publicly was not because I wanted
others to help me write it – it was because I was proud of what I
had done and wanted feedback on where to go next. The ear-
ly interactions were less about other people writing code, and
more about asking others what they thought the project needed,
and then me writing the code myself. When people started ac-
tually sending me suggested code changes, that became a very
natural extension of it. IL

LU
S

T
R

A
T

IO
N

 B
Y

 C
O

L
IN

 B
E

R
G

H

12 / Rotman Magazine Winter 2012

open source timeline

1968
ARPANET is founded. The
precursor to the Internet, it
allows researchers to share
code and information.

1969
Ken Thompson, researcher at
Bell Labs, writes the first ver-
sion of Unix.

1979
AT&T announces plans to
commercialize Unix.

1983
Richard Stallman establishes
the Free Software Founda-
tion at MIT. The project to

construct an operating system
based on Unix but for which
the source code is freely
available, begins. Stallman
also establishes the idea of the
General Public License (GPL).

1987
Andrew Tanenbaum releases
Minix, a version of Unix for the
PC, Mac, Amiga and Atari ST.
Source code included.

1989
Michael Tiemann (now Red
Hat Vice President, Open
Source Affairs) co-founds
Cygnus Solutions, the first
business to provide custom

engineering and support
services for free software.

1991
Linus Torvalds releases the
Linux kernel.

1998
Netscape announces plans
to make the source code for
Communicator free on the
Internet.

The term ‘open source’ is
coined in Palo Alto, CA.

IDC reports that Linux instal-
lations grew by 212% from
the previous year, outpacing

growth rates of Unix, Windows
NT, Netware, and all other
server operating systems.

1999
Red Hat stock triples when it
becomes the first Linux com-
pany to go public.

IBM spends $1B to improve
and advertise Linux.

2000
IDC reports that Linux is the
fastest growing server operat-
ing system in 1999, capturing
25% of the server operating
system shipment market.

Some people have said that Linux is even more interesting
from a social standpoint than from a technical standpoint. Do
you agree?
I don’t disagree, but I think the technical side has been very inter-
esting, too. Not because Linux is a radical new product (which it
isn’t), but because the technology is exciting in and of itself, and
that’s why we have attracted so many developers.

Having said that, what was really new about Linux was the
social development model. Linux was not by any means the first
open-source project, but it was the first large-scale one where de-
velopment was so widely spread out and open. Most projects at
the time were fairly tightly-controlled and consisted of a group of
people who met together physically. In contrast, from the begin-
ning Linux was all about e-mail interactions between people who
didn’t know each other otherwise. As mentioned, I never really
felt like I had to control the end result. Sure, I used my discretion
and would not apply just any random patch of code that came
my way, but at the same time, from very early on the project was
fundamentally about accepting not just new code, but new direc-
tions and ideas from the outside.

Is your desire for progress greater than your desire to create
it yourself?
I’m lazy, so I would have to say yes. The driving factor for me
has never been about wanting to ‘change the world’: I wanted to
write code simply because it was interesting to me, and I would
be bored doing anything else.

These days, I don’t actually write much code. My role has
shifted from development to being a technical lead person and
managing and merging other peoples’ contributions. But the

fundamental drive behind the work hasn’t changed: the same
technical challenge remains, just in a slightly different guise. It’s
still about not being bored, and having deep pride in what I do.
In all honesty, I do what I do for very selfish reasons; I think that
tends to be true of all of us, and it’s actually why Linux has been
so successful. The companies involved with Linux aren’t doing it
for some altruistic reason either – they all want to get something
out of it. It’s just that open source ends up being a great way for a
lot of disparate interests to come together and take advantage of
each others’ selfish motivations.

You once said that you would rather not have a firm idea in
mind of what to do next, but instead, ‘be surprised by what
people do’. Do you still feel this way?
I absolutely still feel that way; it’s what makes it interesting to me.
If I had some strict idea of where I wanted the system to evolve
to, it would feel like a big slog – some faraway goal that we needed
to work at for years and years to reach. Plus, I’d have to spend all
my time trying to convince people that my vision is the right one.
I actually enjoy a healthy dose of argument, so I still spend a lot of
time trying to convince people to go in a particular direction; but
I don’t get ulcers over it. Some of the arguments get very heated
– but that’s part of the fun. In the end, when I’m wrong, I don’t
see it as a failure; it’s just that somebody else had an even stron-
ger argument than mine. I think this is what makes me effective
as a technical lead. People know I can be stubborn, so when we
have ‘heated discussions’ (the polite way of saying lots of cursing
is going on), they may not necessarily always like me very much,
but there is no fundamental long-term conflict. That’s because
I don’t have some long-term plan that is in disagreement with

 Rotman Magazine Winter 2012 / 13

where other parts of the development community might want
to take the project. That’s a really important aspect of Linux; it’s
what makes it possible for one group to work on cell-phone solu-
tions, while another group works on supercomputers. You can’t
have a technical lead who sees one or the other as being the fun-
damental end-point.

You have said that a couple of early glitches actually made
Linux possible. Describe your approach to errors and failure.
It’s not that failing is a good thing, but mistakes are inevitable,
and I think it’s important to try to react to them in a positive man-
ner and learn from them. We’ve had several near disasters that
ended up making Linux stronger. One major early one – which I
can now laugh about – had me basically trashing my original de-
velopment environment by mistake. It was a stupid, mistake too:
I overwrote the disk that the development environment was on
when I was trying to auto-dial my modem. It was one of those, Oh
God, what have I done? moments. However, it turned out that this
happened at a critical moment when Linux was ‘almost there’,
but not quite ready yet. Rather than trying to resurrect my devel-
opment environment, I ended up biting the bullet and making
Linux be stand-alone and self-sufficient. So that failure turned
out to be a major opportunity, and basically forced me to cut my
umbilical cord with the project.

Other failures have been more painful and less funny. As the
project grew, there were a number of times when our workflow
wasn’t as effective as it could be, and that’s when people start to
blame each other for not getting the work done. Changing how
you work is often really, really painful. We’ve had technical fail-
ures too, where we simply did the wrong thing. Those aren’t that

major – as long as you can admit publicly to everybody in the com-
munity, ‘We screwed up, that was the wrong thing to do and all of
that hard work was wasted’. It’s important to be honest about it.

You once said that Linux is led by an ‘invisible guiding hand’.
Please explain what you meant.
That term was coined by economist Adam Smith, and I use it in
the same way that he did: as a kind of ‘inherent balancing mecha-
nism’ that comes from having lots of independent and separate
self-interests involved in a system. It reflects how self-organiza-
tion tends to just ‘happen’, rather than being consciously devel-
oped. Lots of individual selfish goals can end up not necessarily
being all that selfish in the big picture; people and communities
actually act in unselfish ways, even if they have selfish reasons
for doing so.

I don’t use this term to make excuses for egregious bad be-
haviour by equating selfishness with goodness. It’s about the fact
that it often makes sense to be altruistic, because in the end, it
helps you, too. You don’t necessarily need to have a clear, con-
scious plan, because self-aware participants actually end up do-
ing the right thing even without any explicit plan. Thus the ‘invis-
ible hand’.

Your company was one of the first to embrace an open en-
vironment; today, organizations in every industry must do so.
What key lessons about its merits can you share with them?
One key lesson is to not try to control the end result too much.
A fair number of open-source projects have been ‘technically’
open source, but the project leadership really acted as if the whole
point was to generate a return for the originating group. If you do

2001
January: Linus Torvalds re-
leases the highly anticipated 2.4
Linux kernel.

Sun Microsystems CEO Scott
McNealy calls Linux a “better
NT than NT” and says Solaris
is Sun’s implementation of Linux.

February: Microsoft CEO Steve
Ballmer calls Linux a “cancer”
and an “intellectual property
destroyer.”

May: Microsoft’s Senior Vice
President Craig Mundie an-
nounces a “shared source” ini-
tiative, admits there are benefits

to sharing source code with
developers and customers.

June: Microsoft’s Ballmer calls
Linux the biggest threat to
Microsoft.

IDC predicts that worldwide
relational database revenues
on Linux and other open source
platforms will grow from $42
million in 2000 to $7.8 billion
in 2005.

October: Amazon.com reports
in a filing to the SEC that it cut
technology expenses 25%,
from $71 million to $54 million,
and attributes this primarily

to the move to a Linux-based
technology platform.

2010
A Linux Foundation study
shows that the market for Linux
jobs has grown 80% over five
years.

2011
July: Linux 3.0 is released.
According to Linus Torvalds,
“There are no special landmark
features or incompatibilities
related to the version number
change, it’s simply a way to drop
an inconvenient numbering
system in honour of 20 years
of Linux.”

The kernel-development
community numbers in the
thousands, with hundreds of
companies collaborating on
Linux development.

Linux is now running in 75 per
cent of stock exchanges world-
wide and powers the servers
that deliver Amazon, Facebook,
Twitter, eBay and Google.
Every 3 months, another
version is released.

14 / Rotman Magazine Winter 2012

that, you are missing the whole point, and you are also going to
miss out on the talents of the wider community. You won’t get ac-
cess to people who are deeply committed to it.

You believe that centralized systems can never work as well
as ‘distributed’ environments. Please explain why.
The kind of centralized planning that you so often see is a fun-
damentally flawed approach. It needs to evolve with very close
feedback from users, and that cannot possibly reach all the way
back to some central design person or group. I also think that any
centralized system will inevitably be biased towards a particular
goal. That can be beneficial if the goal is well formulated and un-
derstood, because you can be quite efficient if you just aim for
it directly. But most real-world problems aren’t simple enough
to be that well understood, even for a single use-case. Individ-
ual people involved with some individual ‘part’ of the problem
may know about that part, but nobody really knows the ‘whole’
in any detail. Furthermore, few of today’s problems are of that
‘single use’ type; you always end up having different users that
want widely separate things. Their problem spaces may overlap,
but the differences are often larger than the similarities. And in
that case, if you have a central core group that sets the direction
for the project, it will inevitably end up being biased towards a
particular problem space, and thus biased against some others.

In the end, centralized design actually doesn’t work outside
of trivially-simple cases. I also think that centralization is bad in
a purely technical sense. I currently oversee a product called Git
– one of the more successful distributed revision control systems
– and I think using distributed models for actual source code de-
velopment is absolutely critical to its success for various social
and technical reasons.

You once said that when you work to create new products,
rather than looking at what your competitors are doing, you
like to think instead about what they would never do. Please
discuss this approach.
I don’t believe it’s very useful to look at how somebody else solves
a problem, because almost always, the devil is in the details, and
you’ll just be wasting your time trying to figure out those details.
Furthermore, they might not have approached the problem cor-
rectly at all, or maybe a core design decision made by another
person simply forced that particular solution on them, and it may
not be relevant to you. I often think the right thing to do is to take
a step back and look at what the ‘bigger issue’ is, and understand
what the reason for some feature was from a user standpoint,
rather than from an implementation standpoint. It can be very
difficult to get that kind of high-level view by looking at some-
body else’s solution.

Don’t get me wrong, I’m not advocating reinventing the
wheel just for the sake of it. Linux itself is very much based on
the higher-level concepts of Unix that went before it; it’s just that
those high-level concepts aren’t something you would see if you
were staring at some other Unix implementation. When we start-
ed to develop Git, one of the design decisions was literally to do
things differently from other people. That was partly because, to

put it mildly, I really didn’t admire how source control had been
done previously; I had more examples of how not to do things
than I had of actual good ideas. So sometimes, design comes
not out of knowing what to do, but knowing what to avoid. As the
demotivational poster says: “It could be that the purpose of your
life is only to serve as a warning to others.” I definitely know of a
couple of projects like that.

Linux on mobile devices has come a long way in the past two
years, mainly due to Google’s Android Operating System.
Does it please you to know that Linux is in the hands of hun-
dreds of thousands of people every day?
Android is a great example of how Linux – which most people
thought of as a server operating system ten years ago – is now
very much a cellphone operating system, too. And this happened
exactly because people were able to tinker away with it and do
their own thing. The thing that is the most fun for me is when
people use Linux in ways that I never intended it to be used.

Does Linux have an ideology?
No, and I don’t think it should. The important part of the ques-
tion is the word ‘an’; I do think there can be many ideologies: I do
it for my own reasons, other people do it for their own reasons.
The world is a complicated place, and people are interesting and
complicated animals. It’s really refreshing to see people working
on Linux because they believe they can make the world a better
place by spreading technology and making it available to people
more widely. That’s one ideology, and I think it’s a great one. It
isn’t really why I started Linux myself, but it warms my heart to
see it used that way. But I also think it’s great to see all the com-
mercial companies that use open source simply because it’s good
for business. That’s a totally different ideology, and I think it’s a
perfectly good one, too. The only ideology I really despise is the
kind that is about exclusion of other ideologies. That’s just small-
minded and stupid. So the important part about open source is
not the ideology – it’s just that everybody can use it for their own
needs and for their own reasons.

You have said the people you most admire are ‘those who try
to figure out how the world works’. What has your own experi-
ence with Linux taught you about how the world works?
Hey, I don’t know; I didn’t end up as a physicist, so I haven’t fig-
ured out how the world works at that level. But I do believe I have
a better understanding of how people work these days. Of course,
most of the people I interact with are geeks, so you might want to
take that with a grain of salt ;)

Linus Torvalds created and oversees open source development for the widely-
used Linux operating system. He is a fellow of the Linux Foundation, whose
members “support the neutral development, promotion and protection of the
platform” with their membership fees and include IBM, Cisco, Intel, Google,
Panasonic, HP, Nokia, Toyota, Sony and Siemens.

