

Negative Externality on Service Level across Priority Classes: Evidence from a Radiology Workflow Platform

Joint with Timothy Chan, Nicholas Howard, Saman Lagzi* and Bernardo F. Quiroga

Supported by the Sandra Rotman Centre for Health Sector Strategy

JOURNAL OF OPERATIONS MANAGEMENT

RESEARCH ARTICLE 🔂 Open Access 🛛 😨 🚯

Negative externality on service level across priority classes: Evidence from a radiology workflow platform

Saman Lagzi, Bernardo F. Quiroga 🔀, Gonzalo Romero 🔀, Nicholas Howard, Timothy C. Y. Chan

First published: 04 May 2023 | https://doi.org/10.1002/joom.1252 |

An earlier version of this manuscript was circulated under the title "Negative Spillover on Service Level across Priority Classes: Evidence from a Radiology Workflow Platform," included on the doctoral dissertation of the first author.

Handling Editor: Guangzhi Shang

SECTIONS

📜 PDF 🔧 TOOLS < SHARE

Volume 69, Issue 8 December 2023 Pages 1257-1281

Recommended

Pewss: A platform of extensible workflow simulation service for workflow scheduling research

Meng-Han Tsai, Kuan-Chou Lai, Hsi-Ya Chang, Kuan Fu Chen, Kuo-Chan Huang

Software: Practice and Experience

Supported by the Sandra Rotman Centre for Health Sector Strategy

https://onlinelibrary.wiley.com/doi/full/10.1002/joom.1252

Motivation

- Imbalanced compensation schemes (pay vs. workload) are common in different industries
 - We analyze data from a radiology workflow platform
- We study the impact of imbalanced compensation schemes on service level
 - Service level set by priority-specific turnaround time targets
 - Cherry picking profitable tasks may lead to neglecting high priority tasks

Radiology Workflow Platform

- Onsite radiologists work at employer hospital
 - Salaried, excluded from our analysis
- Offsite radiologists work from home
 - Compensated based on studies read, ≈ piece-rate compensation
 - Select studies from a common pool
- Each study has a *priority level* indicating its urgency
 - From Routine to Hyperacute. Defines target turnaround time (TAT)

Three Important Metrics

RVU

Rotman

• Proxy for offsite radiologist **compensation** per study

- Stands for "Relative Value Unit"
- Set by CMS for all medical procedures
- In 2022, CMS reimburses \$33.59 per RVU

- In principle, high RVU→ high workload (ERL). But is it perfectly aligned?
- Off-site radiologist may be in competition with each other for reading studies with high RVU and low ERL, i.e., high BFB

Research Questions

1) Do workers pick high pay-to-workload tasks when they have the freedom to select tasks with different pay-to-workload ratio from a common pool?

2) Does this behavior have a negative impact on the firm-level service provided to its customers?

Brief Literature Review

- Piece-rate Compensation Schemes:
 - Improved worker productivity & greater individual earnings: Paarsch and Shearer (1999, 2000), Guajardo et al. (2012), Chan et al. (2018), ...
 - Determining optimal pay rate can be very challenging: Edwards (1980), Clawson (1980), Freeman and Kleiner (2005), …
- Healthcare Management:
 - Performance as a function of workload: Powell et al. (2012), Kc (2013), Kuntz et al. (2014), Berry Jaeker and Tucker (2016), Freeman et al. (2016), ...
 - Task ordering: Ibanez et al. (2017), KC et al. (2017), ...
- Radiology:
 - Financial incentives on RVU per day: Monaghan et al. (2006), Ding et al. (2009), Boland et al (2010), Andriole et al (2010), Heller (2013), Swayne(2014), ...
 - Relation between RVU and workload, potential for cherry-picking : Arenson et al. (2001), Duznak and Muroff (2010), Itri et al. (2019), ...

- Final dataset: January 2014 to July 2017
 - 2.168 M studies
 - 251 procedures
 - 115 radiologists
 - 62 hospitals

Data attributes			
Attribute	Example values		
study ID	1234567		
Procedure	CT Head or Brain W Contrast		
RVU	1.13		
Priority	Routine		
Date Arrived	01-01-2014 09:30:00 AM		
Date Report Filed	01-01-2014 09:54:07 AM		
Report Length	1137		
Radiologist ID	123		

Priorities and System Service Level

Service level: characterized by meeting priority-dependent target turnaround times

Priority Name	Priority Type	Target Turnaround Time (TAT)	Percentage	Fraction of delays
Hyperacute	Emergency	0.5 hours	1.13%	5.94%
Stat	Urgent	1 hour	67.13%	6.23%
Expedited	Administrative	4 hours	6.67%	21.42%
Routine	Low	24 hours	25.07%	6.43%

Hypotheses Drivers of Turnaroundtime

- Kc et al. (2017): physicians preferred easier tasks when facing higher workload
- Ibanez et al. (2017) find that radiologists prioritize similar tasks and tasks with *shortest expected processing time*
 - Time-rate (salaried) setting
 - Studies are centrally assigned to individual queues
 - Urgent studies only

H1: TAT of a study is increasing in its ERL

Priority	Routine	Expedited	Stat
First Stage	0.070	0.004	0.001
Z_{RVUi}	(0.879)	(0.904)	(0.984)
	[0.000]	[0.000]	[0.000]
$\mathbf{Z}_{L^{R}i}$	(0.005)	0.005	-0.002
	(0.004) [0.258]	(0.004) [0.276]	[0.001]
$\mathbf{Z}_{L^{E}i}$	0.014	-0.182	-0.021
	(0.023)	(0.035)	(0.007)
7	$\begin{bmatrix} 0.550 \end{bmatrix}$	[0.000]	$\begin{bmatrix} 0.003 \end{bmatrix}$
$\Sigma_L s_i$	(0.021)	(0.026)	(0.013)
	[0.191]	[0.012]	[0.095]
$Z_{L^{H}i}$	0.397 (0.211)	(0.045)	0.071 (0.114)
	[0.059]	[0.874]	[0.533]
Second Stage	0 1 4 9	0.005	0.025
BFB	(0.050)	(0.041)	(0.035)
	[0.004]	[0.038]	[0.512]
ERL	-0.447	0.180 (0.166)	0.981 (0.243)
	[*****]	[*****]	[*****]
L^R	0.113	0.022	0.003
	(0.004) [0.000]	(0.003) [0.000]	(0.001) [0.002]
L^E	0.250	0.448	-0.019
	(0.014)	(0.017)	(0.002)
T S	[0.000]	[0.000]	[0.000]
L^{2}	(0.235) (0.012)	(0.015) (0.027)	(0.018)
	[0.000]	[0.000]	[0.000]
L^H	-0.168	$\begin{array}{c} 0.761 \\ (0.168) \end{array}$	(0.638)
	[0.105]	[0.000]	[0.000]
Controls	\checkmark	\checkmark	· √ _
Pseudo R^2	0.114	0.113	0.21
(Underidentification test) $($	0.011	0.004	0.008
Cragg-Donald Wald F statistic			_
(Weak identification test)	$9.2 imes e^4$	$5.1 imes e^4$	$2.3 \times e^5$
Hansen J statistic <i>p</i> -value (Overidentification test of all instruments)	0.23	0.796	0.108
Anderson-Rubin Wald <i>p</i> -value (Weak-instrument-robust inference)	0.118	0.695	0.000

No support for Routine and Expedited studies

Supported for Stat studies

Robust standard errors are in parentheses. *p*-values are in brackets.

Hypotheses Drivers of Turnaroundtime

• Financial incentives for *salaried* radiologist are effective in reducing TAT (Andriole et al. 2010, Boland et al. 2010)

• Financial incentives in radiology are based on meeting RVU targets over a period of time (Heller 2013, Itri et al. 2019)

H2: TAT of a study is decreasing in its BFB

Priority	Routine	Expedited	Stat
Eirst Stage			
Z_{RVUi}	0.879	(0.904)	0.984
	[0.000]	[0.000]	[0.000]
Z_{IR_i}	0.005	0.005	-0.002
	(0.004)	(0.004)	(0.001)
7	[0.258]	[0.276]	[0.102]
$Z_{L^E i}$	(0.014)	-0.182	-0.021
	[0.550]	[0.000]	[0.003]
$Z_{L^{S_i}}$	0.027	0.064	0.022
	(0.021)	(0.026)	(0.013)
7	[0.191]	[0.012]	[0.095]
$Z_{L^{H_{i}}}$	(0.397)	(0.045)	(0.071) (0.114)
	[0.059]	[0.874]	[0.533]
Second Stage			
BFB	(-0.143)	(0.041)	(0.035)
	(0.030)	(0.041)	[0.034]
ERL	-0.447	0.180	0.981
	(0.264)	(0.166)	(0.243)
* D			
L^{n}	(0.113)	(0.022)	(0.003)
	[0.000]	[0.000]	[0.002]
L^E	0.250	0.448	-0.019
	(0.014)	(0.017)	(0.002)
T S	[0.000]	[0.000]	[0.000]
L^{5}	(0.233)	(0.515) (0.027)	(0.518) (0.016)
	[0.000]	[0.000]	[0.000]
L^H	-0.168	(0.761)	(0.638)
	(0.105)	(0.168)	(0.032)
Controls		[0.000]	[0.000]
Decendo R ²	v 0.114	V 0.119	V 0.91
Kleibergen-Paap <i>p</i> -value	0.114	0.115	0.21
(Underidentification test)	0.011	0.004	0.008
Cragg-Donald Wald F statistic	0.0 1	F 1 4	0 0 5
(Weak identification test)	$9.2 \times e^4$	$5.1 \times e^4$	$2.3 \times e^3$
Hansen J statistic <i>p</i> -value	0.23	0.796	0.108
Anderson-Rubin Wald n-value	0.20	0.190	0.100
(Weak-instrument-robust inference)	0.118	0.695	0.000

Supported for Routine and Expedited studies

No Support for Stat studies

Robust standard errors are in parentheses. *p*-values are in brackets.

Hypotheses on Externality Effect

- In Healthcare, myopic focus on attractive tasks can have a negative externality
 - Stan and Vermaulen (2013), Freeman et al (2016), ...

H3: The TAT of Stat and Expedited studies increases with the load per capita of Routine studies with high BFB*

H4: The pbb of delay of Stat and Expedited studies increases with the load per capita of Routine studies with high BFB*

*Routine studies with high BFB = Routine studies with higher BFB than 90th Routine BFB percentile

Summary of Results on Spillover Effect

On

- H3 and H4 supported for Expedited studies
- Weaker support for Stat studies

Econometric Specifications: H3

- TATs T_i are continuous, nonnegative, and right skewed
- We fit a two-stage least squares (2SLS) regression, with ERL as the endogenous variable, to explain the TATs
- The instruments are Heteroscedasticity Based Instrumental Variables we construct
- The variables of interest are a partition of the load per capita (LPC) according to priorities

$$ERL_i = \gamma_{0j} + \boldsymbol{\gamma}_{1j}^T X_i + \psi_{1j} L_i^{LR} + \psi_{2j} L_i^{HR} + \gamma_{2j} L_i^E + \gamma_{3j} L_i^S + \gamma_{4j} L_i^H + \gamma_{5j} BFB_i + \boldsymbol{\eta}_j^\prime \boldsymbol{Z}_i + \boldsymbol{\nu}_i,$$

$$\log T_{i} = \beta_{0j} + \beta_{1j}^{T} X_{i} + \phi_{1j} L_{i}^{LR} + \phi_{2j} L_{i}^{HR} + \beta_{2j} L_{i}^{E} + \beta_{3j} L_{i}^{S} + \beta_{4j} L_{i}^{H} + \beta_{5j} BFB_{i} + \alpha_{j} E\hat{R}L_{i} + \epsilon_{i}.$$

Controls: hour, day of week, calendar month, radiologist, ERL and BFB of arriving study with interactions. $P_{ij} = 1$ if study i has priority j, Expedited is the base priority. Not Routine: Expedited + Stat + Hyperacute

Econometric Specifications: H4

- Let $D_i = 1$ if study is delayed, i.e. its turnaround time is longer than the target according to its priority, and $D_i = 0$ otherwise
- We fit a linear probability model to the delay of the studies
- The controls and variables of interest are the same as before

$$ERL_i = \gamma_{0j} + \boldsymbol{\gamma}_{1j}^T X_i + \psi_{1j} L_i^{LR} + \psi_{2j} L_i^{HR} + \gamma_{2j} L_i^E + \gamma_{3j} L_i^S + \gamma_{4j} L_i^H + \gamma_{5j} BFB_i + \boldsymbol{\eta}_j' \boldsymbol{Z}_i + \nu_i,$$

$$D_{i} = \beta_{0j} + \beta_{1j}^{T} X_{i} + \phi_{1j} L_{i}^{LR} + \phi_{2j} L_{i}^{HR} + \beta_{2j} L_{i}^{E} + \beta_{3j} L_{i}^{S} + \beta_{4j} L_{i}^{H} + \beta_{5j} BFB_{i} + \alpha_{j} E\hat{R}L_{i} + \epsilon_{i}.$$

Priority	Routine	Expedited	Stat
First Stage	10 10 10 10	2.72.277	
Z_{RVUi}	(0.879)	(0.904)	(0.984)
	[0.100]	[0.000]	[0.000]
Z_{IRi}	0.005	0.004	-0.002
	(0.004)	(0.004)	(0.001)
	[0.244]	[0.301]	[0.100]
$\mathbf{Z}_{L^E i}$	(0.012)	-0.173	-0.021
	[0.023]	[0.030]	[0.007]
Z_{ISi}	0.026	0.062	0.022
	(0.021)	(0.026)	(0.013)
	[0.206]	[0.015]	[0.088]
$Z_{L^{H}i}$	(0.398)	(0.045)	0.07
	[0.209]	[0.299]	[0.113] [0.536]
Second Stage	[]	[]	[]
BFB	-0.15	-0.086	-0.034
	(0.05) [0.003]	[0.041]	(0.054) [0.525]
EBL	-0.421	0.185	0.976
	(0.262)	(0.169)	(0.244)
(1.4.4)	[*****]	****	[****
L^{LR}	(0.097)	0.015	-0.007
	[0.000]	[0.012]	[0.001]
L^{HR}	0.296	0.1	0.12
_	(0.034)	(0.033)	(0.003)
- 7	[0.000]	[0.003]	[0.000]
L^E	(0.241)	(0.445)	(0.021)
	[0.000]	[0.000]	[0.000]
L^S	0.233	0.517	0.519
	(0.012)	(0.027)	(0.016)
T II	[0.000]	[0.000]	[0.000]
L^{H}	-0.194 (0.105)	(0.758)	(0.652)
	[0.064]	[0.000]	[0.000]
Controls	\checkmark	\checkmark	\checkmark
Pseudo R^2	0.1145	0.1135	0.211
Kleibergen-Paap <i>p</i> -value (Underidentification test)	0.010	0.004	0.008
Cragg_Donald Wald F statistic	0.010	0.004	0.000
(Weak identification test)	$9.3 imes e^4$	$5.1 imes e^4$	$2.3 \times e^5$
Hansen J statistic <i>p</i> -value			
(Overidentification test of all instruments)	0.201	0.607	0.08
Anderson-Rubin Wald <i>p</i> -value	0.000	0.000	0.000
(Weak-instrument-robust inference)	0.099	0.399	0.000

TAT	of	Expedited	studies i	S

Rotman

- ≈ unaffected by platform's load
 per capita of Routine studies with
 low BFB (L^{LR}) → 2 min (significant)
- increasing in platform's load per capita of Routine studies with high BFB (L^{HR}) → 18 min (significant)

- Externality from Routine studies degrades the service level provided to Expedited studies
 - Supports H3 and H4 for Expedited studies

Robust standard errors are in parentheses. *p*-values are in brackets.

Priority	Routine	Expedited	Stat
First Stage		120 gener 11	20 gram 10
Z_{RVUi}	0.879	(0.904)	0.984
	[0.130]	[0.097]	[0.000]
ZIR	0.005	0.004	-0.002
$\mathbf{L}_{L}^{\mathbf{K}_{i}}$	(0.004)	(0.004)	(0.001)
	[0.244]	[0.301]	[0.100]
$\mathbf{Z}_{L^E i}$	0.012	-0.173	-0.021
	(0.023)	(0.036)	(0.007)
7	[0.59]	0.000	0.003
$\mathcal{L}_{L^{S}i}$	(0.026)	(0.062)	(0.022)
	[0.206]	[0.015]	[0.088]
Z_{IH_i}	0.398	0.045	0.07
	(0.209)	(0.299)	(0.113)
	[0.057]	[0.88]	[0.536]
Second Stage	0.000	0.02	0.010
D 1 D	(0.005)	(0.001)	(0.005)
	[0.264]	[0.001]	[0.000]
ERL	0.011	0.08	0.177
	(0.27)	(0.03)	(0.034)
TID			
L^{LR}	(0.006)	(0.005)	-0.002
	[0.000]	[0.000]	[0.000]
L^{HR}	0.061	0.036	0.012
	(0.004)	(0.004)	$(0.00\overline{2})$
	[0.000] 🔪	[0.000]	[0.000]
L^E	(0.021)	(0.111)	-0.018
	[0.001]	(0.005)	(0.0005)
IS	0.018	0.126	0.196
L	(0.002)	(0.003)	(0.004)
	[0.000]	[0.000]	[0.000]
L^H	0.028	0.152	0.104
	(0.03)	(0.05)	(0.01)
	[0.362]	[0.002]	[0.000]
Controls	✓	✓	✓
Pseudo R ² Kleibergen-Paan z-value	0.061	0.096	0.104
(Underidentification test)	0.010	0.004	0.008
Cragg-Donald Wald F statistic			
(Weak identification test)	$9.3 \times e^4$	$5.1 \times e^4$	$2.3\times e^5$
Hansen J statistic <i>p</i> -value			
(Overidentification test of all instruments)	0.463	0.975	0.405
Anderson-Rubin Wald <i>p</i> -value	0.070	0.100	0.000
(Weak-instrument-robust inference)	0.052	0.198	0.000

TAT of Expedited studies is
 ≈ unaffected by platform's load per capita of Routine studies with

low BFB $(L^{LR}) \rightarrow 2 \min (significant)$

- increasing in platform's load per capita of Routine studies with high BFB (L^{HR}) → 18 min (significant)
- Stronger results for Probability
 of Delay
- Externality from Routine studies degrades the service level provided to Expedited studies
 - Supports H3 and H4 for Expedited studies

Conclusions

- Imbalanced compensation schemes (pay vs. workload) are common in different industries
 - We analyze data from a radiology workflow platform
- We study the impact of imbalanced compensation schemes on service level
 - Service level set by priority-specific turnaround time targets
 - Cherry picking profitable tasks may lead to neglecting high priority tasks
- We show turnaround (service level) time is:
 - decreasing in pay-to-workload for lower priority tasks
 - increasing in workload for high-priority tasks
- Negative externality:
 - \uparrow economically attractive low priority tasks $\Rightarrow \uparrow$ turnaround times & delays for administrative priority

Robustness and impact

- Our results are robust to Kinky Regression, joint estimation with interactions, etc.
- Counterfactual: Negative externality responsible for an annual bed blocking cost of \$1.5M USD
- Unbalanced piece-rates can have significant operational consequences for organizations with common task pool
 - E.g. Radiology, Amazon Mechanical Turk, Clickworker, etc.
 - Opportunity to mitigate negative effects through data analytics and operations management tools