Predicting Delays in Queues with Invisible Customers

Speaker: Arik Senderovich (Faculty of Information, University of Toronto)

Data Analytics in Healthcare – 4th Annual Research Roundtable 3/23/2021

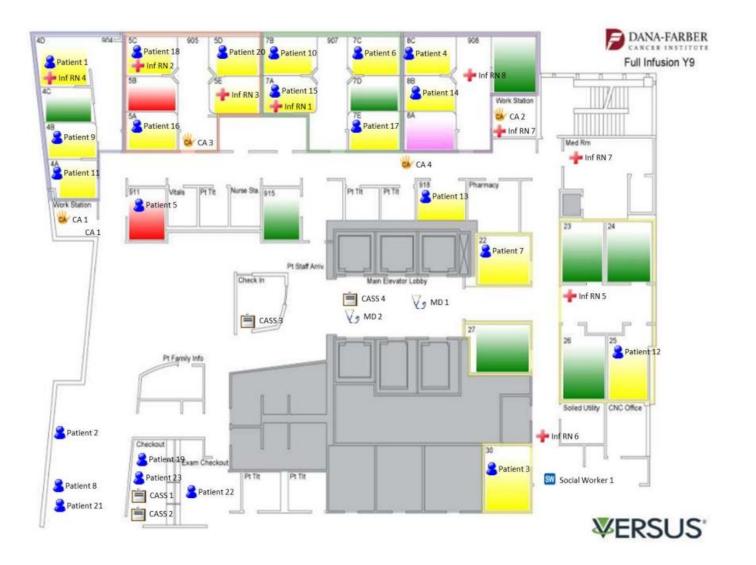
Joint work with: Yoav Kerner (Ben-Gurion University) Ricky Roet-Green, Yaron Shaposhnik, Yuting Yuan (University of Rochester)

Motivation: Dana-Farber Cancer Institute

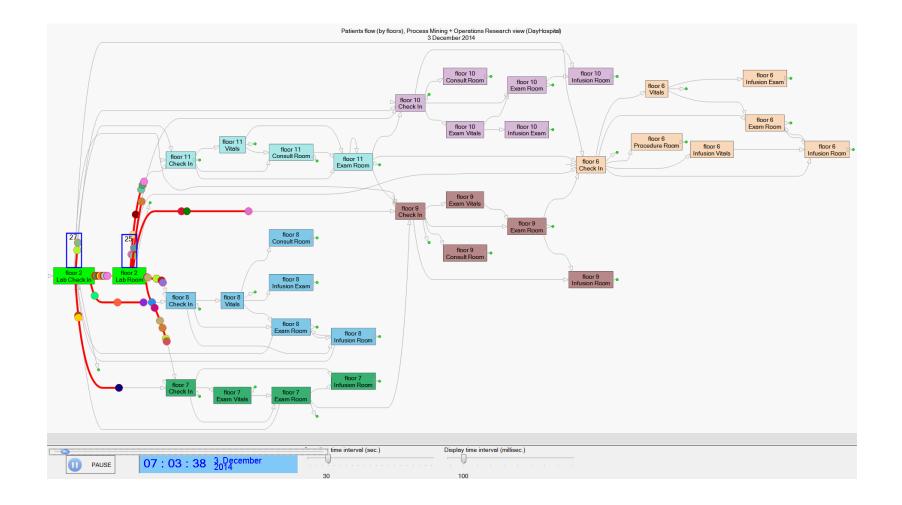
- > 1000 patients / day
- > 250 health providers
- ➤ 70 administrative staff
- On 7 medical floors
- All tracked via RTLS



Live Monitoring of Patients at DFCI



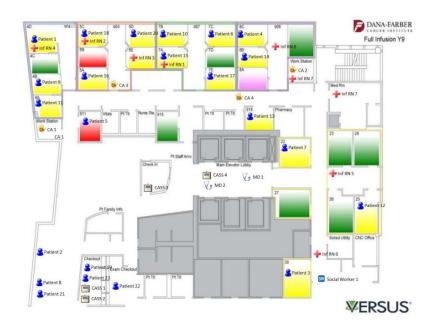
Motivation: Patient Flow



Delay Prediction at Dana-Farber

- Accurate delay prediction is important:
 - \circ $\,$ Informing patients and families
 - Quality of care: apologies and compensation
 - Planning the next step in the process

- > Around 25% of patients are not being tracked
- Current prediction module uses only observed information

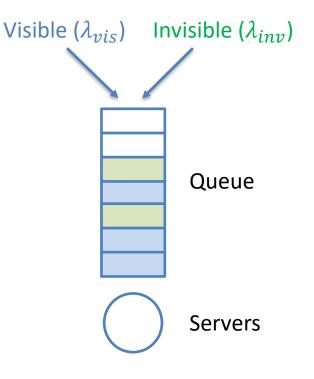


Research Question and Applications

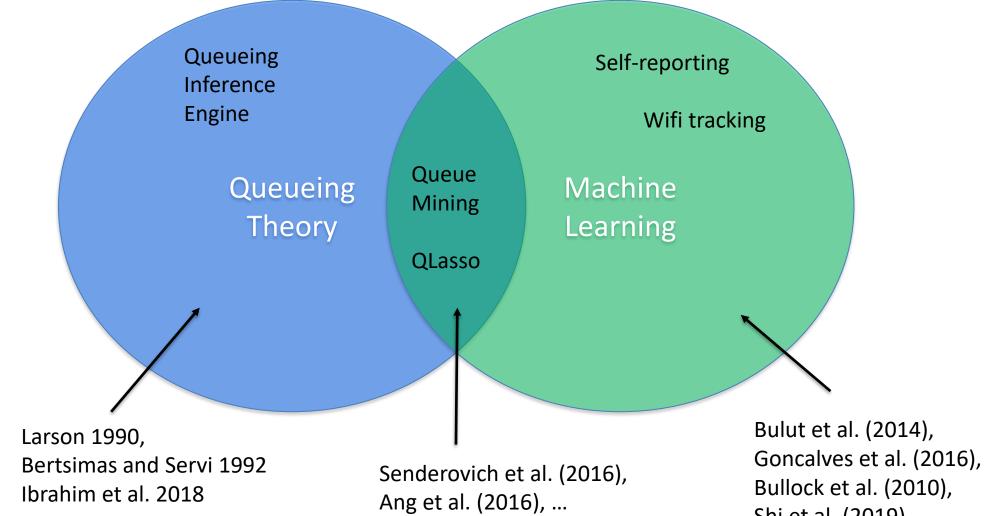
- Research question: how to predict waiting times when some of the customers in queue are invisible (to the system)?
- Additional applications:
 - \circ Travel time prediction
 - Hybrid lines (app + in-person)

The Problem of Delay Prediction

- Predict the waiting time of an arriving visible patient given the **observed** system state
- We assume to know:
 - o Inter-arrival time distribution (for overall population)
 - \circ Service times distribution
 - Number of servers
 - Proportion of invisible (independent of the above)



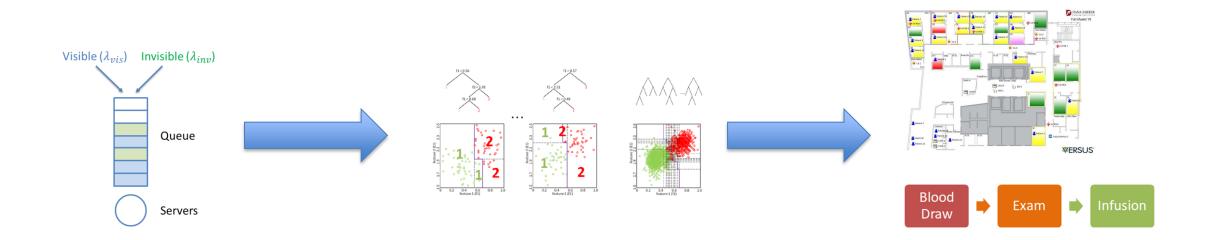
Related work



Shi et al. (2019), Bauer et al. (2011), ...

Our Approach & Outline of Talk

- 1. Construct exact queue-length predictor for a simple queueing model (M/M/1)
- 2. Gain insights by combining ML and analytical results from M/M/1
- 3. Extend the model to intractable queueing systems and validate insights

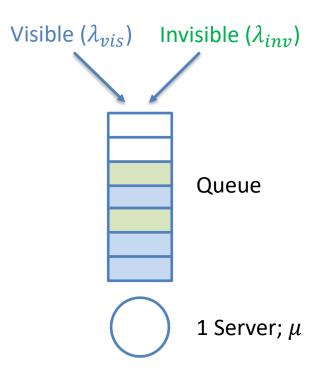


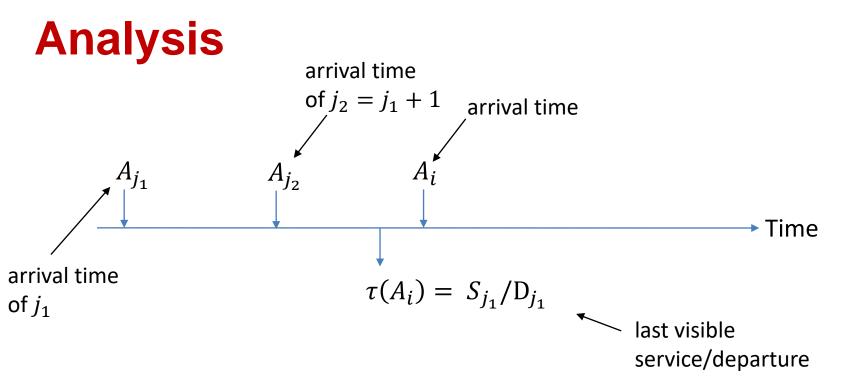
Simple Model: M/M/1 Queue

- Single-server, Poisson arrivals, exponential service times
- Arrival rate and service rate are known
- First-come first-served (FCFS)
- > Actual system state (n_{vis}, n_{inv})

Best delay predictor: $\frac{n_{vis}+n_{inv}}{\mu}$

> Observed system state is (n_{vis})

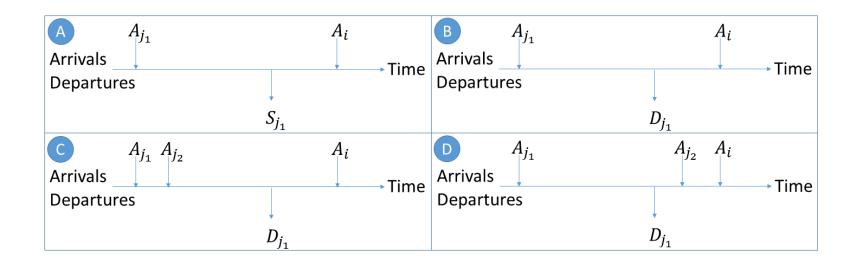




Observations:

- Customers arriving before A_{j_1} do not affect prediction (FCFS)
- o $S_{j_2} > A_i$: customer j_2 arrived but has not started service yet
- Invisible customers that arrive after A_{j_2} will not be served prior to A_i
- There are several cases based on the interplay between A_{i_2} and $\tau(A_i)$

Analysis – cont.



- There are four cases
- > Using conditional expectations repeatedly we compute the expected number of invisible customers n_{inv} at A_i for each case.

Analytical solution for M/M/1

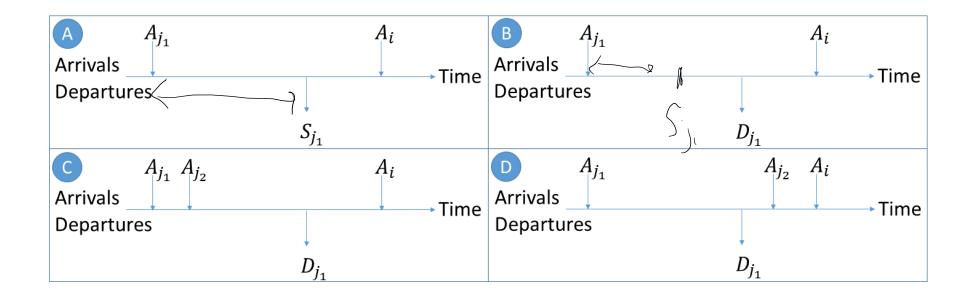
PROPOSITION 1. The total expected number of customers at time A_i can be written as

$$\begin{split} \mathbb{E} \left[L^{A}(A_{i}) \right] &= \lambda_{inv}(A_{i} - A_{j_{1}}) + L_{vis}(A_{i}) - 1. \\ \mathbb{E} \left[L^{B}(A_{i}) \right] &= L_{vis}(A_{i}) - 1 + \frac{\rho_{inv}}{1 - \rho_{inv}} - \frac{2\sqrt{\rho_{inv}}}{\pi} \int_{0}^{\pi} \frac{e^{-\gamma(y;\rho_{inv})\mu t}}{(\gamma(y;\rho_{inv}))^{2}} sin(y) \times \\ &\left(\sqrt{\rho_{inv}} sin\left(y + \frac{\lambda_{B} sin(y)}{\sqrt{\rho_{inv}}} \right) - sin\left(\frac{\lambda_{B} sin(y)}{\sqrt{\rho_{inv}}} \right) \right) e^{-\lambda_{B} \left(1 - \frac{cos(y)}{\sqrt{\rho_{inv}}} \right)} dy. \\ \mathbb{E} \left[L^{C}(A_{i}) \right] &= L_{vis}(A_{i}) - 1 + \sum_{l=1}^{\infty} l \cdot \frac{\mu_{C}^{l} I_{l}(\sqrt{\lambda_{C} \mu_{C}})}{\sum_{l'=1}^{\infty} \mu_{C}^{l'} I_{l'}(\sqrt{\lambda_{C} \mu_{C}})} + \lambda_{inv}(A_{i} - A_{j_{2}}). \\ \mathbb{E} \left[L^{D}(A_{i}) \right] &= L_{vis}(A_{i}) - 1 + \lambda_{inv}(A_{i} - A_{j_{2}}) + \\ &\sum_{r=1}^{\infty} r \cdot \frac{\sum_{l=r+1}^{\infty} \frac{(\mu_{D})^{l-r}}{(l-r)!} \sum_{n=0}^{\infty} \frac{(\lambda_{D})^{n}}{n!} \cdot P_{n,l}(A_{j_{2}} - D_{j_{1}}; \lambda_{inv}, \mu, \rho_{inv})}{\sum_{r'=1}^{\infty} \sum_{l=r'+1}^{\infty} \sum_{(l-r')!}^{\infty} \sum_{n=0}^{\infty} \frac{(\lambda_{D})^{n}}{n!} \cdot P_{n,l}(A_{j_{2}} - D_{j_{1}}; \lambda_{inv}, \mu, \rho_{inv})}. \end{split}$$

where $\rho_{inv} = \lambda_{inv}/\mu$, $\lambda_B = \lambda_{inv}(D_{j_1} - A_{j_1})$, $\lambda_C = \lambda_{inv}(A_{j_2} - A_{j_1})$, $\mu_C = \mu(A_i - D_{j_1})$, $\lambda_D = \lambda_{inv}(D_{j_1} - A_{j_1})$, and $\mu_D = \mu(A_i - A_{j_2})$.

Observations from M/M/1 Analysis

- $\circ~$ Important time points and temporal intervals
- Prediction depends on the case (A/B/C/D)



Types of Prediction Methods

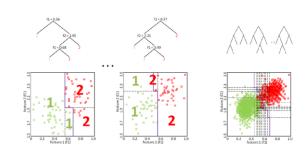
1. Direct prediction via queue length estimation (no ML):

D1: Analytic estimate of invisible queue (Proposition 1) – results only for M/M/1 $\frac{n_{vis} + n_{inv}}{\mu}$ D2: Adjusted queue length $\frac{Q_{vis}}{p_{vis}}$ (20% visible; I observe 10 -> total = 50)

2. Snapshot prediction (heavy-traffic). No learning.

3. <u>Machine learning with one of the following feature sets:</u>

F0: Prophet (fully-observed queue) – lower bound (used for scaling)
F1: Visible queue length only
F2: Visible queue length + case (A,B,C or D)
F3: Visible queue length + time differences
F4: Visible queue length + estimate of invisible queue + time differences
F5: Visible queue length + estimate of invisible queue
F6: Visible queue length + Snapshot predictor as a feature



- Linear regression
- Lasso
- Regression Trees
- KNN
 -

Experimental setting

Numerical experiment:

- $\circ \ \mu = 1, \ \lambda \in [0.49, 0.54, \dots, 0.99], \ p_{vis} \in [0.1, 0.2, \dots, 1]$
- 120,000 customers per run, first 1,000 are omitted
- 80%-20% training-test (time-order respecting) split for ML methods
- Predict delay for every arriving visible customer using one of the methods (direct, snapshot, ML)
- For ML methods: we use the 6 feature sets together with different ML algorithms (Linear regression, LASSO, Decision Trees,...)

Results for Direct and Snapshot Methods

- Scaled Mean Squared Error (sMSE):
 - average (stdev) across all scenarios

D1: Proposition 1	D2: Visible Q adjust	Snapshot Prediction
1.6 (0.46)	3.28 (2.88)	3.18 (0.75)

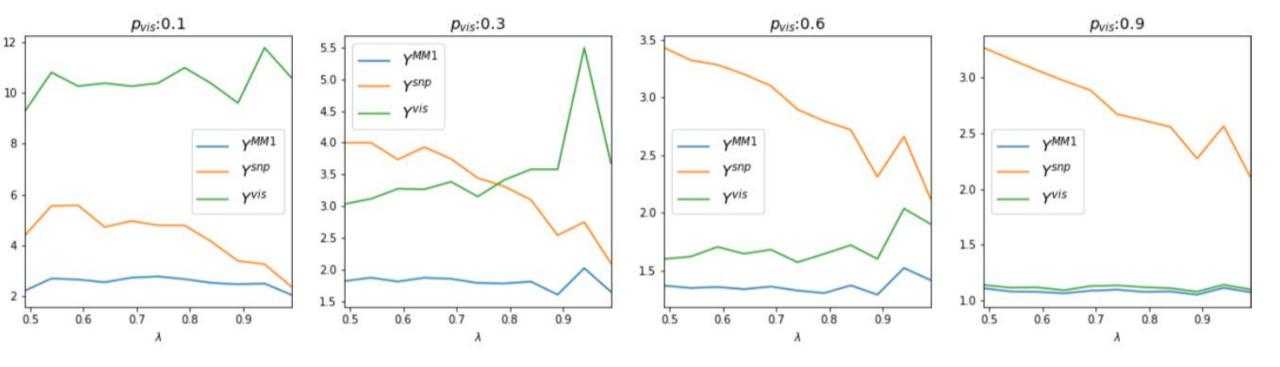
Results for ML-based Methods (sMSE)

Best non-ML method: 1.6 (0.46)

Feature Set	Reg. Trees	KNN	LASSO	Linear Regression
F0: Prophet	1.04 (0.06)	1.16 (0.09)	1 (0.00)	1 (0)
F1: Visible only	2.32 (1.68)	2.66 (1.88)	2.28 (1.62)	2.47 (1.78)
F2: Visible + Case (A/B/C/D)	2.22 (1.60)	2.50 (1.82)	2.18 (1.57)	2.20 (1.50)
F3: Visible + Time diff	3.38 (0.96)	1.89 (0.57)	1.65 (0.48)	1.67 (0.51)
F4: Visible + Prop. 1+Time diff	3.38 (0.95)	1.88 (0.57)	1.60 (0.45)	1.60 (0.46)
F5: Visible + Prop. 1	3.28 (0.93)	1.85 (0.55)	1.60 (0.45)	1.60 (0.45)
F6: Visible + Snapshot	4.57 (0.64)	3.31 (0.47)	2.66 (0.39)	2.97 (0.52)

- Linear models work well
- ML methods do not improve over direct estimation (M/M/1) expected
- $\circ~$ The identified time differences improve predictions considerably without prop 1 ~
- $\circ~$ Closed-formula does not improve much beyond time differences

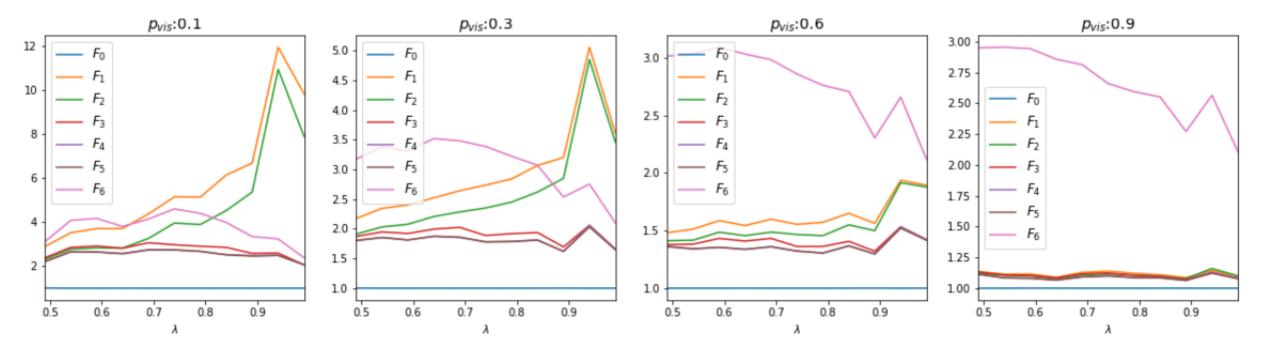
non-ML: Sensitivity to Visibility and Load (sMSE)



Analytical result (blue) outperforms the other non-ML methods (in line with table)
 Snapshot prediction (orange) combined with ML improves for higher load (expected)

High chances for recent/relevant visibility

LASSO: Sensitivity to Visibility and Load (sMSE)

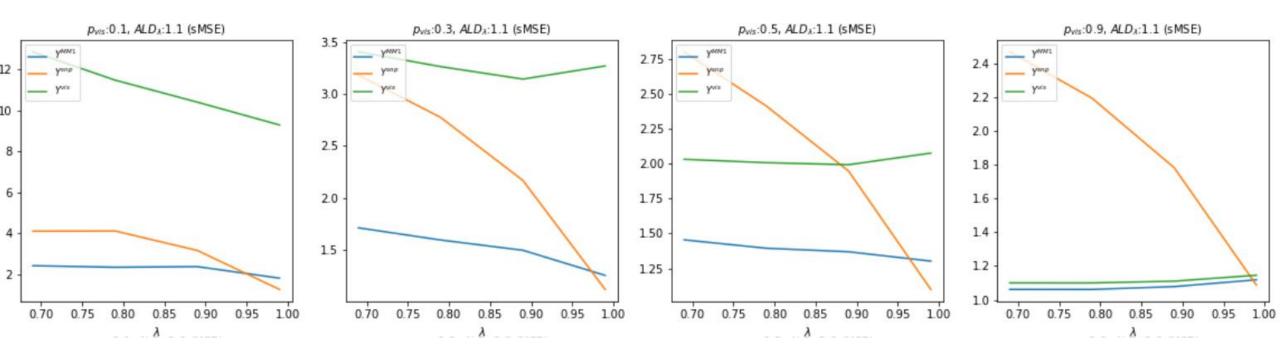


- For low visibility: methods F3, F4 and F5 that use the analytic result and/or time differences work best
- \circ For high visibility: methods that use # of visible customers are good enough

Prediction in 3 (more) Complex QSystems

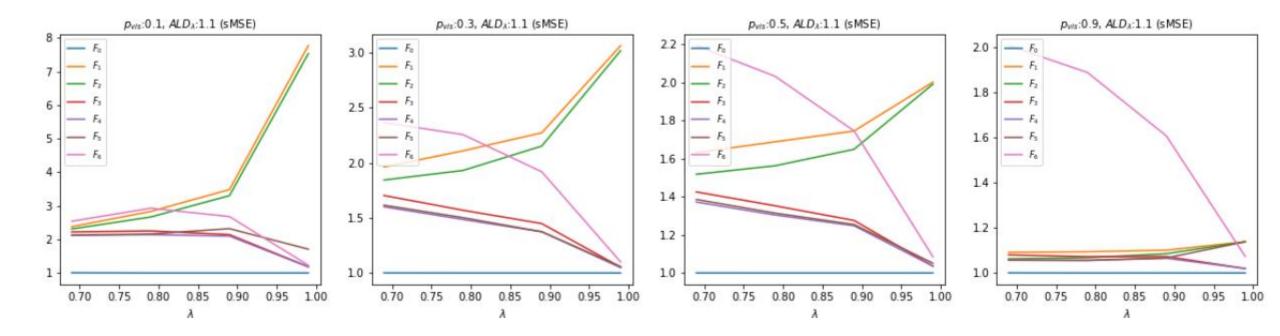
- Before we apply the method to real data, we need insights into 3 complex systems (using their synthetically generated data):
 - G/M/1 queue appointment-based arrivals (+noise)
 - \circ M/G/1 queue non-exponential service times
 - \circ M(t)/M/1 queue time-varying Poisson arrivals
- Existing theory breaks in all 3
- We use features from the M/M/1 experiment including the analytical solution for the M/M/1 queue (even though assumptions do not hold)
- > Reminder: the idea is to complicate the system to resemble real hospital data

G/M/1 Queue: non-ML Results (sMSE)



- Analytical result (blue) remains relevant when assumptions are violated
- Snapshot prediction (orange) improves for higher load
- Using the visible queue (green) is always worse

G/M/1 Queue: LASSO Results (sMSE)



• For low visibility methods that use the **time differences** work best

- Especially in heavy load!
- \circ For high visibility, the methods that use # of visible customers work well
- Methods based on analytical result are still highly relevant (when fed into ML)

Conclusion

- > New prediction problem: prevalent in sensor data
- Analytical solution for a base case M/M/1 queues
- Identified potentially useful features
- ML-based approach in more general cases
- > Numerical experiments suggest that
 - \circ Existing benchmarks fail
 - $\circ~$ Features are effective and linear models work well
 - ML approach seem to work well in general queues
- > Ongoing work:
 - Gaining insights for more complex queueing models
 - Apply the methods to Dana-Farber data and compare to naive prediction

Thank you! arik.senderovich@utoronto.ca