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Motivation: Dana-Farber Cancer Institute

➢ 1000 patients / day

➢ 250 health providers

➢ 70 administrative staff

➢ On 7 medical floors

➢ All tracked via RTLS



Live Monitoring of Patients at DFCI



Motivation: Patient Flow



Delay Prediction at Dana-Farber

➢ Accurate delay prediction is important:

o Informing patients and families

o Quality of care: apologies and compensation

o Planning the next step in the process

➢ Around 25% of patients are not being tracked

➢ Current prediction module uses only observed information



Research Question and Applications

➢ Research question: how to predict waiting times when some of the 

customers in queue are invisible (to the system)?

➢ Additional applications: 

o Travel time prediction

o Hybrid lines (app + in-person)



The Problem of Delay Prediction

Servers

Queue

Invisible (𝜆𝑖𝑛𝑣)Visible (𝜆𝑣𝑖𝑠)➢ Predict the waiting time of an arriving visible patient given 

the observed system state

➢ We assume to know:

o Inter-arrival time distribution (for overall population)

o Service times distribution

o Number of servers

o Proportion of invisible (independent of the above)
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Our Approach & Outline of Talk

1. Construct exact queue-length predictor for a simple queueing model (M/M/1)
2. Gain insights by combining ML and analytical results from M/M/1
3. Extend the model to intractable queueing systems and validate insights



Simple Model: M/M/1 Queue

➢ Single-server, Poisson arrivals, exponential 

service times

➢ Arrival rate and service rate are known

➢ First-come first-served (FCFS) 

➢ Actual system state 𝑛𝑣𝑖𝑠, 𝑛𝑖𝑛𝑣

Best delay predictor: 
𝑛𝑣𝑖𝑠+𝑛𝑖𝑛𝑣

𝜇

➢ Observed system state is 𝑛𝑣𝑖𝑠

1 Server; 𝜇

Queue

Invisible (𝜆𝑖𝑛𝑣)Visible (𝜆𝑣𝑖𝑠)



Analysis

Observations:

o Customers arriving before 𝐴𝑗1do not affect prediction (FCFS)

o 𝑆𝑗2 > 𝐴𝑖 : customer 𝑗2 arrived but has not started service yet

o Invisible customers that arrive after 𝐴𝑗2 will not be served prior to 𝐴𝑖

o There are several cases based on the interplay between 𝐴𝑗2and 𝜏 𝐴𝑖

𝐴𝑖𝐴𝑗1

𝜏 𝐴𝑖 = 𝑆𝑗1/D𝑗1

Time

𝐴𝑗2

arrival time

last visible 
service/departure

arrival time 
of 𝑗1

arrival time 
of 𝑗2 = 𝑗1 + 1



Analysis – cont.

➢ There are four cases

➢ Using conditional expectations repeatedly we compute the expected number of 

invisible customers 𝑛𝑖𝑛𝑣 at 𝐴𝑖 for each case. 



Analytical solution for M/M/1 



Observations from M/M/1 Analysis

o Important time points and temporal intervals

o Prediction depends on the case (A/B/C/D)



1. Direct prediction via queue length estimation (no ML):

D1: Analytic estimate of invisible queue (Proposition 1) – results only for M/M/1

D2: Adjusted queue length           (20% visible; I observe 10 -> total = 50)

2. Snapshot prediction (heavy-traffic). No learning.

3. Machine learning with one of the following feature sets:

F0: Prophet (fully-observed queue) – lower bound (used for scaling)

F1: Visible queue length only

F2: Visible queue length + case (A,B,C or D)

F3: Visible queue length + time differences

F4: Visible queue length + estimate of invisible queue + time differences

F5: Visible queue length + estimate of invisible queue 

F6: Visible queue length + Snapshot predictor as a feature

Types of Prediction Methods

𝑄𝑣𝑖𝑠
𝑝𝑣𝑖𝑠

• Linear regression
• Lasso
• Regression Trees
• KNN
• ….

Available 
at 
prediction 
time



Experimental setting

➢ Numerical experiment:  
o 𝜇 = 1, 𝜆 ∈ 0.49,0.54,… , 0.99 , 𝑝𝑣𝑖𝑠 ∈ 0.1,0.2, … , 1
o 120,000 customers per run, first 1,000 are omitted
o 80%-20% training-test (time-order respecting) split for ML methods
o Predict delay for every arriving visible customer using one of the 

methods (direct, snapshot, ML)
➢ For ML methods: we use the 6 feature sets together with different ML 

algorithms (Linear regression, LASSO, Decision Trees,…)



Results for Direct and Snapshot Methods

D1: Proposition 1 D2: Visible 
Q adjust

Snapshot 
Prediction

1.6 (0.46) 3.28 (2.88) 3.18 (0.75)

➢ Scaled Mean Squared Error (sMSE): 
o average (stdev) across all scenarios



Results for ML-based Methods (sMSE)

Feature Set Reg. Trees KNN LASSO Linear Regression

F0: Prophet 1.04 (0.06) 1.16 (0.09) 1 (0.00) 1 (0)

F1: Visible only 2.32 (1.68) 2.66 (1.88) 2.28 (1.62) 2.47 (1.78)

F2: Visible + Case (A/B/C/D) 2.22 (1.60) 2.50 (1.82) 2.18 (1.57) 2.20 (1.50)

F3: Visible + Time diff 3.38 (0.96) 1.89 (0.57) 1.65 (0.48) 1.67 (0.51)

F4: Visible + Prop. 1+Time diff 3.38 (0.95) 1.88 (0.57) 1.60 (0.45) 1.60 (0.46)

F5: Visible + Prop. 1 3.28 (0.93) 1.85 (0.55) 1.60 (0.45) 1.60 (0.45)

F6: Visible + Snapshot 4.57 (0.64) 3.31 (0.47) 2.66 (0.39) 2.97 (0.52)

Best non-ML method: 1.6 (0.46)

o Linear models work well 
o ML methods do not improve over direct estimation (M/M/1) - expected
o The identified time differences improve predictions considerably without prop 1
o Closed-formula does not improve much beyond time differences



non-ML: Sensitivity to Visibility and Load (sMSE) 

o Analytical result (blue) outperforms the other non-ML methods (in line with table)
o Snapshot prediction (orange) combined with ML improves for higher load (expected)

• High chances for recent/relevant visibility



LASSO: Sensitivity to Visibility and Load (sMSE)

o For low visibility: methods F3, F4 and F5 that use the analytic result and/or time 
differences work best

o For high visibility: methods that use # of visible customers are good enough



Prediction in 3 (more) Complex QSystems

➢ Before we apply the method to real data, we need insights into 3 complex 

systems (using their synthetically generated data):

o G/M/1 queue – appointment-based arrivals (+noise)

o M/G/1 queue - non-exponential service times

o M(t)/M/1 queue - time-varying Poisson arrivals

➢ Existing theory breaks in all 3

➢ We use features from the M/M/1 experiment including the analytical solution 

for the M/M/1 queue (even though assumptions do not hold)

➢ Reminder: the idea is to complicate the system to resemble real hospital data



G/M/1 Queue: non-ML Results (sMSE)

• Analytical result (blue) remains relevant when assumptions are violated
• Snapshot prediction (orange) improves for higher load 
• Using the visible queue (green) is always worse



G/M/1 Queue: LASSO Results (sMSE)

o For low visibility methods that use the time differences work best
• Especially in heavy load!

o For high visibility, the methods that use # of visible customers work well
o Methods based on analytical result are still highly relevant (when fed into ML)



Conclusion

➢ New prediction problem: prevalent in sensor data

➢ Analytical solution for a base case – M/M/1 queues

➢ Identified potentially useful features

➢ ML-based approach in more general cases

➢ Numerical experiments suggest that 

o Existing benchmarks fail

o Features are effective and linear models work well

o ML approach seem to work well in general queues

➢ Ongoing work: 

o Gaining insights for more complex queueing models

o Apply the methods to Dana-Farber data and compare to naive prediction
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